Application of network pharmacology, bioinformatics, computational molecular docking, and experimental validation to study the anticancer effects of oleanolic acid in oral squamous carcinoma cells
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
E. Gudoityte, O. Arandarcikaite, I. Mazeikiene, V. Bendokas and J. Liobikas, Ursolic and oleanolic acids: Plant metabolites with neuroprotective potential, Int. J. Mol. Sci.22(9) (2021) Article ID 4599 (15 pages); https://doi.org/10.3390/ijms22094599Search in Google Scholar
T. Shan, J. Ye, J. Jia, Z. Wang, Y. Jiang, Y. Wang, Y. Wang, K. Zheng, and Z. Ren, Viral UL8 is involved in the antiviral activity of oleanolic acid against HSV-1 infection, Front. Microbiol.12 (2021) Article ID 689607 (12 pages); https://doi.org/10.3389/fmicb.2021.689607Search in Google Scholar
N. Gupta, A review on recent developments in the anticancer potential of oleanolic acid and its analogs (2017-2020), Mini Rev. Med. Chem.22(4) (2022) 600–616; https://doi.org/10.2174/1389557521666210810153627Search in Google Scholar
Y. Han, C. Wang, X. Li and G. Liang, Oleanolic acid reduces oxidative stress and neuronal apoptosis after experimental subarachnoid hemorrhage by regulating Nrf2/HO-1 pathway, Drug Dev. Res.83(3) (2022) 680–687; https://doi.org/10.1002/ddr.21899Search in Google Scholar
E. Saberian, A. Jenča, A. Petrášová, J. Jenčová, R. A. Jahromi and R. Seiffadini, Oral cancer at a Glance, Asian Pac. J. Cancer Biol.8(4) (2023) 379–386; https://doi.org/10.31557/apjcb.2023.8.4.379-386Search in Google Scholar
D. Jagadeesan, K. V. Sathasivam, N. K. Fuloria, V. Balakrishnan, G. H. Khor, M. Ravichandran, M. Solyappan, S. Fuloria, G. Gupta and G. Yadav, Comprehensive insights into oral squamous cell carcinoma: Diagnosis, pathogenesis, and therapeutic advances, Pathol. Res. Pract.261 (2024) Article ID 155489; https://doi.org/10.1016/j.prp.2024.155489Search in Google Scholar
A. Capote-Moreno, P. Brabyn, M. F. Muñoz-Guerra, J. Sastre-Pérez, V. Escorial-Hernandez, F. J. Rodríguez-Campo, T. García and L. Naval-Gías, Oral squamous cell carcinoma: epidemiological study and risk factor assessment based on a 39-year series, Int. J. Oral Maxillofac. Surg.49(12) (2020) 1525–1534; https://doi.org/10.1016/j.ijom.2020.03.009Search in Google Scholar
D. Vemula, P. Jayasurya, V. Sushmitha, Y. N. Kumar and V. Bhandari, CADD, AI and ML in drug discovery: A comprehensive review, Eur. J. Pharm. Sci.181 (2023) Article ID 106324 (23 pages); https://doi.org/10.1016/j.ejps.2022.106324Search in Google Scholar
M. T. Muhammed and E. Aki-Yalcin, Molecular docking: principles, advances, and its applications in drug discovery, Lett. Drug Des. Discov.21(3) (2024) 480–495; https://doi.org/10.2174/1570180819666220922103109Search in Google Scholar
L. Zhao, H. Zhang, N. Li, J. Chen, H. Xu, Y. Wang and Q. Liang, Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula, J. Ethnopharmacol.309 (2023) Article ID 116306; https://doi.org/10.1016/j.jep.2023.116306Search in Google Scholar
P. H. Patel, A. Jha and G. S. Chakraborthy, Role of Bioinformatics in Drug Design and Discovery, in CADD and Informatics in Drug Discovery (Part of the book series: Interdisciplinary Biotechnological Advances (IBA)), Springer Nature Singapore, Singapore 2023, pp. 1–33.Search in Google Scholar
A. Daina, O. Michielin and V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep.7(1) (2017) Article ID 42717 (13 pages); https://doi.org/10.1038/srep42717Search in Google Scholar
M. Gupta, H. J. Lee, C. J. Barden and D. F. Weaver, The blood–brain barrier (BBB) score, J. Med. Chem.62(21) (2019) 9824–9836; https://doi.org/10.1021/acs.jmedchem.9b01220Search in Google Scholar
A. Daina, O. Michielin and V. Zoete, SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules, Nucleic Acids Res.47(W1) (2019) W357–W364; https://doi.org/10.1093/nar/gkz382Search in Google Scholar
Y. Liu, X. Yang, J. Gan, S. Chen, Z. X. Xiao and Y. Cao, CB-Dock2: Improved protein-ligand blind docking by integrating cavity detection, docking, and homologous template fitting, Nucleic Acids Res.50(W1) (2022) W159–W164; https://doi.org/10.1093/nar/gkac394Search in Google Scholar
C. M. McBride, B. Levine, Y. Xia, C. Bellamacina, T. Machajewski, Z. Gao, P. Renhowe, W. Antonios-McCrea, P. Barsanti, K. Brinner and A. Costales, Design, structure-activity relationship, and in vivo characterization of the development candidate NVP-HSP990, J. Med. Chem.57(21) (2014) 9124–9129; https://doi.org/10.1021/jm501107qSearch in Google Scholar
T. Hu, J. E. Yeh, L. Pinello, J. Jacob, S. Chakravarthy, G. C. Yuan, R. Chopra and D. A. Frank, Impact of the N-terminal domain of STAT3 in STAT3-dependent transcriptional activity, Mol. Cell. Biol.35(19) (2015) 3284–3300; https://doi.org/10.1128/MCB.00060-15Search in Google Scholar
G. Q. Gong, B. Bilanges, B. Allsop, G. R. Masson, V. Roberton, T. Askwith, S. Oxenford, R. R. Madsen, S. E. Conduit, D. Bellini and M. Fitzek, A small-molecule PI3Kα activator for cardioprotection and neuroregeneration, Nature618(7963) (2023) 159–168; https://doi.org/10.1038/s41586-023-05972-2Search in Google Scholar
J. R. López-Blanco, J. I. Aliaga, E. S. Quintana-Ortí and P. Chacón, iMODS: internal coordinates normal mode analysis server, Nucleic Acids Res.42(W1) (2014) W271–W276; https://doi.org/10.1093/nar/gku339Search in Google Scholar
A. Kuriata, A. M. Gierut, T. Oleniecki, M. P. Ciemny, A. Kolinski, M. Kurcinski and S. Kmiecik, CABS-flex 2.0: A web server for fast simulations of flexibility of protein structures, Nucleic Acids Res.46(W1) (2018) W338–W343; https://doi.org/10.1093/nar/gky356Search in Google Scholar
A. Maharati and M. Moghbeli, PI3K/AKT signaling pathway as a critical regulator of epithelial--mesenchymal transition in colorectal tumor cells, Cell Commun. Signal.21(1) (2023) Article ID 201 (15 pages); https://doi.org/10.1186/s12964-023-01225-xSearch in Google Scholar
Y. Cheng, J. Chen, Y. Shi, X. Fang and Z. Tang, MAPK signaling pathway in oral squamous cell carcinoma: biological function and targeted therapy, Cancers14(19) (2022) Article ID 4625; https://doi.org/10.3390/cancers14194625Search in Google Scholar
D. B. Doroshow, S. Bhalla, M. B. Beasley, L. M. Sholl, K. M. Kerr, S. Gnjatic, I. I. Wistuba, D. L. Rimm, M. S. Tsao and F. R. Hirsch, PD-L1 as a biomarker of response to immune-checkpoint inhibitors, Nat. Rev. Clin. Oncol.18(6) (2021) 345–362; https://doi.org/10.1038/s41571-021-00473-5Search in Google Scholar
M. E. Youssef, S. Cavalu, A. M. Hasan, G. Yahya, M. A. Abd-Eldayem and S. A. Saber, Role of ganetespib, an HSP90 inhibitor, in cancer therapy: from molecular mechanisms to clinical practice, Int. J. Mol. Sci.24(5) (2023) Article ID 5014; https://doi.org/10.3390/ijms24055014Search in Google Scholar
M. Niu, B. Zhang, L. Li, Z. Su, W. Pu, C. Zhao, L. Wei, P. Lian, R. Lu, R. Wang and J. Wazir, Q. Gao, S. Song and H. Wang, Targeting HSP90 inhibits proliferation and induces apoptosis through AKT1/ERK pathway in lung cancer, Front. Pharmacol.12 (2022) Article ID 724192 (13 pages); https://doi.org/10.3389/fphar.2021.724192Search in Google Scholar
H. A. Amissah, S. E. Combs and M. Shevtsov, Tumor dormancy and reactivation: the role of heat shock proteins, Cells13(13) (2024) Article ID 1087; https://doi.org/10.3390/cells13131087Search in Google Scholar
A. Bahmei, F. Karimi, S. M. Mahini, H. Irandoost, P. Tandel, H. Niknam and G. Tamaddon, Targeting telomerase with MST-312 leads to downregulation of CCND1, MDM2, MYC, and HSP90AA1 and induce apoptosis in Jurkat cell line, Med. Oncol.41(11) (2024) Article ID 267; https://doi.org/10.1007/s12032-024-02412-7Search in Google Scholar
M. Tolomeo and A. Cascio, The multifaceted role of STAT3 in cancer and its implication for anticancer therapy, Int. J. Mol. Sci.22(2) (2021) Article ID 603; https://doi.org/10.3390/ijms22020603Search in Google Scholar
Y. Hu, Z. Dong and K. Liu, Unraveling the complexity of STAT3 in cancer: Molecular understanding and drug discovery, J. Exp. Clin. Cancer Res. 43(1) (2024) Article ID 23 (29 pages); https://doi.org/10.1186/s13046-024-02949-5Search in Google Scholar
S. Zou, Q. Tong, B. Liu, W. Huang, Y. Tian and X. Fu, Targeting STAT3 in cancer immunotherapy, Mol. Cancer19 (2020) Article ID 145 (19 pages); https://doi.org/10.1186/s12943-020-01258-7Search in Google Scholar
A. Jha, M. Alam, T. Kashyap, N. Nath, A. Kumari, K. K. Pramanik, S. Nagini and R. Mishra, Crosstalk between PD-L1 and Jak2-Stat3/MAPK-AP1 signaling promotes oral cancer progression, invasion, and therapy resistance, Int. Immunopharmacol. 124(Part A) (2023) Article ID 110894; https://doi.org/10.1016/j.intimp.2023.110894Search in Google Scholar
S. Sharma and P. Kumar, Dissecting the functional significance of HSP90AB1 and other heat shock proteins in countering glioblastomas and ependymomas using omics analysis and drug prediction using virtual screening, Neuropeptides102 (2023) Article ID 102383; https://doi.org/10.1016/j.npep.2023.102383Search in Google Scholar
Y. J. Zhang and D. H. Yi, CDK1-SRC Interaction-dependent transcriptional activation of HSP90AB1 promotes antitumor immunity in hepatocellular carcinoma, J. Proteome Res.22(12) (2023) 3714–3729; https://doi.org/10.1021/acs.jproteome.3c00379Search in Google Scholar
X. Sun, K. Li, M. Hase, R. Zha, Y. Feng, B.-Y. Li and H. Yokota, Suppression of breast cancer-associated bone loss with osteoblast proteomes via Hsp90ab1/moesin-mediated inhibition of TGFβ/FN1/CD44 signaling, Theranostics12(2) (2022) 929–943; https://doi.org/10.7150/thno.66148Search in Google Scholar
P. Castel, E. Toska, J. A. Engelman and M. Scaltriti, The present and future of PI3K inhibitors for cancer therapy, Nat. Cancer2(6) (2021) 587–597; https://doi.org/10.1038/s43018-021-00218-4Search in Google Scholar
M. Zhang, H. Jang and R. Nussinov, PI3K inhibitors: review and new strategies, Chem. Sci.11(23) (2020) 5855–5865; https://doi.org/10.1039/d0sc01676dSearch in Google Scholar