Uneingeschränkter Zugang

Light-induced rearrangement from macrocyclic to bicyclic lactam: A case study of N-chlorinated laurolactam

, , , , ,  und   
09. Jan. 2025

Zitieren
COVER HERUNTERLADEN

T. Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal and S. W. Krska, The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules, Chem. Soc. Rev. 45(3) (2016) 546–576; https://doi.org/10.1039/C5CS00628GSearch in Google Scholar

S. K. Sinha, S. Guin, S. Maiti, J. P. Biswas, S. Porey and D. Maiti, Toolbox for distal C–H bond functionalizations in organic molecules, Chem. Rev. 122(6) (2022) 5682–5841; https://doi.org/10.1021/acs.chemrev.1c00220Search in Google Scholar

Z. Yang, M. Arnoux, D. Hazelard, O. R. Hughes, J. Nabarro, A. C. Whitwood, M. A. Fascione, C. D. Spicer, P. Compain and W. P. Unsworth, Expanding the scope of the successive ring expansion strategy for macrocycle and medium-sized ring synthesis: unreactive and reactive lactams, Org. Biomol. Chem. 22 (2024) 2985–2991; https://doi.org/10.1039/D4OB00285GSearch in Google Scholar

L. G. Baud, M. A. Manning, H. L. Arkless, T. C. Stephens and W. P. Unsworth, Ring-expansion approach to medium-sized lactams and analysis of their medicinal lead-like properties, Chem. Eur. J. 23 (2017) 2225–2230; https://doi.org/10.1002/chem.201605615Search in Google Scholar

F. I. Saldívar-González, E. Lenci, A. Trabocchi and J. L. Medina-Franco, Exploring the chemical space and the bioactivity profile of lactams: a chemoinformatic study, RSC Adv. . (2019) Article ID 27105 (12 pages); https://doi.org/10.1039/c9ra04841cSearch in Google Scholar

P. Bellotti, H.-M. Huang, T. Faber and F. Glorius, Photocatalytic late-stage C–H functionalization, Chem. Rev. 123(8) (2023) 4237–4352; https://doi.org/10.1021/acs.chemrev.2c00478Search in Google Scholar

A. W. Hofmann, Ueber die Einwirkung des Broms in alkalischer Lösung auf die Amine, Ber. Dtsch. Chem. Ges. 16(1) (1883) 558–560; https://doi.org/10.1002/cber.188301601120Search in Google Scholar

A. W. Hofmann, Ueber die Einwirkung des Broms in alkalischer Lösung auf Amide, Ber. Dtsch. Chem. Ges. 14(2) (1881) 2725–2736; https://doi.org/10.1002/cber.188101402242Search in Google Scholar

A. W. Hofmann, Zur Kenntniss der Coniin-Gruppe, Ber. Dtsch. Chem. Ges. 18(1) (1885) 109–131; https://doi.org/10.1002/cber.18850180126Search in Google Scholar

K. Löffler and C. Freytag, Über eine neue Bildungsweise von N-alkylierten Pyrrolidinen, Ber. Dtsch. Chem. Ges. 42(3) (1909) 3427–3431; https://doi.org/10.1002/cber.19090420377Search in Google Scholar

G. Zubčić, S. Shkunnikova, D. Šakić and M. Marijan, Renaissance of Hofmann-Löffler-Freytag reaction – Development of C–H functionalisation strategies based on green chemistry principles, Kem. Ind. 71(5–6) (2022) 359–373; https://doi.org/10.15255/KUI.2021.070Search in Google Scholar

S. W. Baldwin and R. J. Doll, Synthesis of the 2-aza-7-oxatricyclo[4.3.2.04,8]undecane nucleus of some gelsemium alkaloids, Tetrahedron Lett. 20(35) (1979) 3275–3278; https://doi.org/10.1016/S0040-4039(01)95450-2Search in Google Scholar

K. Löffler and S. Kober, Über die Bildung desi-Nicotins aus N-Methyl-p-pyridyl-butylamin (Dihydrometanicotin), Ber. Dtsch. Chem. Ges. 42 (1909) 3431–3438; https://doi.org/10.1002/cber.19090420378Search in Google Scholar

S. Shkunnikova, H. Zipse and D. Šakić, Role of substituents in the Hofmann-Löffler-Freytag reaction. A quantum-chemical case study on nicotine synthesis, Org. Biomol. Chem. 19 (2021) 854–865; https://doi.org/10.1039/D0OB02187CSearch in Google Scholar

G. Zubčić, J. You, F. L. Zott, S. S. Ashirbaev, M. K. Marković, E. Bešić, V. Vrček, H. Zipse and D. Šakić, Regioselective rearrangement of nitrogen- and carbon-centered radical intermediates in the Hof-mann-Löffler-Freytag reaction, J. Phys. Chem. A 128(13) (2024) 2574–2583; https://doi.org/10.1021/acs.jpca.3c07892Search in Google Scholar

Kessil PR-160L 370-Gen2 specification; https://www.kessil.com/products/science_PR160L.php; last access date June 28, 2024.Search in Google Scholar

M. R. Willcott, MestRe Nova, J. Am. Chem. Soc. 131(36) (2009) 13180; https://doi.org/10.1021/ja906709tSearch in Google Scholar

L. Patiny, H. Musallam, A. Bolaños, M. Zasso, J. Wist, M. Karayilan, E. Ziegler, J. C. Liermann and N. E. Schlörer, NMRium: Teaching nuclear magnetic resonance spectra interpretation in an online platform, Beilstein J. Org. Chem. 20 (2024) 25–31; https://doi.org/10.3762/bjoc.20.4Search in Google Scholar

S. Stoll and A. Schweiger, EasySpin, a comprehensive software package for spectral simulation and analysis in EPR, J. Magn. Reson. 178(1) (2006) 42–55; https://doi.org/10.1016/j.jmr.2005.08.013Search in Google Scholar

D. Šakić, G. Zubčić, J. You, T. Weitner, V. Chechik and E. Bešić, VisualEPR; https://github.com/DSakicLab/visualEPR; last access date December 1, 2023.Search in Google Scholar

C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher and S. Grimme, WIREs Comput. Mol. Sci. 11 (2020) Article ID e01493 (49 pages); https://doi.org/10.1002/wcms.1493Search in Google Scholar

P. Pracht, F. Bohle and S. Grimme, Automated exploration of the low-energy chemical space with fast quantum chemical methods, Phys. Chem. Chem. Phys. 22 (2020) 7169–7192; https://doi.org/10.1039/C9CP06869DSearch in Google Scholar

S. Grimme, Exploration of chemical compound, conformer, and reaction space with meta-dynamics simulations based on tight-binding quantum chemical calculations, J. Chem. Theory Comput. 15(5) (2019) 2847–2862; https://doi.org/10.1021/acs.jctc.9b00143Search in Google Scholar

C. Bannwarth, S. Ehlert and S. Grimme, GFN2-xTB – An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions, J. Chem. Theory Comput. 15(3) (2019) 1652–1671; https://doi.org/10.1021/acs.jctc.8b01176Search in Google Scholar

A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98(7) (1993) 5648–5652; https://doi.org/10.1063/1.464913Search in Google Scholar

R. Ditchfield, W. J. Hehre and J. A. Pople, Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules, J. Chem. Phys. 54(2) (1971) 724–728; https://doi.org/10.1063/1.1674902Search in Google Scholar

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox. Gaussian 16. Wallingford CT, USA: Gaussian, Inc.; 2016.Search in Google Scholar

S. Grimme, Semiempirical hybrid density functional with perturbative second-order correlation, J. Chem. Phys. 124(3) (2006) Article ID 034108 (17 pages); https://doi.org/10.1063/1.2148954Search in Google Scholar

S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132(15) (2010) Article ID (20 pages) 154104; https://doi.org/10.1063/1.3382344Search in Google Scholar

F. Neese, T. Schwabe and S. Grimme, Analytic derivatives for perturbatively corrected “double hybrid” density functionals: Theory, implementation, and applications, J. Chem. Phys. 126(12) (2007) Article ID (16 pages) 124115; https://doi.org/10.1063/1.2712433Search in Google Scholar

L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov and J. A. Pople, Gaussian-3 theory using reduced Möller-Plesset order, J. Chem. Phys. 110(10) (1999) 4703–4709; https://doi.org/10.1063/1.478385Search in Google Scholar

HR-ZOO, Cluster Supek; University of Zagreb University Computing Centre – SRCE, KK.01.1.1.08.0001, EU funded within OPCC for Republic of Croatia, Zagreb, 2023.Search in Google Scholar

PharmInova Project, Cluster Sw.Pharma.Hr; University of Zagreb Faculty of Pharmacy and Biochemistry, KK.01.1.1.02.0021, EU funded by the European Regional Development Fund: Zagreb, 2023.Search in Google Scholar

IQmol; https://github.com/nutjunkie/IQmol; last access date July 2, 2024.Search in Google Scholar

D. Šakić and H. Zipse, Radical stability as a guideline in C–H amination reactions, Adv. Synth. Catal. 358 (2016) 3983–3991; https://doi.org/10.1002/adsc.201600629Search in Google Scholar

Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC Press, London 2007.Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Pharmazie, Pharmazie, andere