Zitieren

A. Jiménez-Sánchez, A. J. Martínez-Ortega, P. J. Remón-Ruiz, A. Piñar-Gutiérrez, J. L. Pereira-Cunill and P. P. García-Luna, Therapeutic properties and use of extra virgin olive oil in clinical nutrition: A narrative review and literature update, Nutrients 14(7) (2022) Article ID 1440 (36 pages); https://doi.org/10.3390/nu14071440 Search in Google Scholar

A. Romani, F. Ieri, S. Urciuoli, A. Noce, G. Marrone, C. Nediani and R. Bernini, Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of Olea europaea L., Nutrients 11(8) (2019) Article ID 1776 (33 pages); https://doi.org/10.3390/nu11081776 Search in Google Scholar

J. Espeso, A. Isaza, J. Y. Lee, P. M. Sörensen, P. Jurado, R. de J. Avena-Bustillos, M. Olaizola and J. C. Arboleya, Olive leaf waste management, Front. Sustain. Food Syst. 5 (2021) Article ID 660582 (13 pages); https://doi.org/10.3389/fsufs.2021.660582 Search in Google Scholar

F. S. Markhali, J. A. Teixeira and C. M. R. Rocha, Olive tree leaves – a source of valuable active compounds, Processes 8(9) (2020) Article ID 1177 (18 pages); https://doi.org/10.3390/pr8091177 Search in Google Scholar

B. Gullón, P. Gullón, G. Eibes, C. Cara, A. De Torres, J. C. López-Linares, E. Ruiz and E. Castro, Valorisation of olive agro-industrial by-products as a source of bioactive compounds, Sci. Total Environ. 645 (2018) 533–542; https://doi.org/10.1016/j.scitotenv.2018.07.155 Search in Google Scholar

S. Selim, M. Albqmi, M. M. Al-Sanea, T. S. Alnusaire, M. S. Almuhayawi, H. AbdElgawad, S. K. Al Jaouni, A. Elkelish, S. Hussein, M. Warrad and M. T. El-Saadony, Valorizing the usage of olive leaves, bioactive compounds, biological activities, and food applications: A comprehensive review, Front. Nutr. 9 (2022) Article ID 1008349 (27 pages); https://doi.org/10.3389/fnut.2022.1008349 Search in Google Scholar

G. Difonzo, G. Squeo, A. Pasqualone, C. Summo, V. M. Paradiso and F. Caponio, The challenge of exploiting polyphenols from olive leaves: addition to foods to improve their shelf-life and nutritional value, J. Sci. Food Agric. 101(8) (2021) 3099–3116; https://doi.org/10.1002/jsfa.10986 Search in Google Scholar

E. Medina, C. Romero, P. García and M. Brenes, Characterization of bioactive compounds in commercial olive leaf extracts, and olive leaves and their infusions, Food Funct. 10(8) (2019) 4716–4724; https://doi.org/10.1039/C9FO00698B Search in Google Scholar

A. C. P. da Silva, J. P. Paiva, R. R. Diniz, V. M. dos Anjos, A. B. S. M. Silva, A. V. Pinto, E. P. dos Santos, A. C. Leitão, L. M. Cabral, C. R. Rodrigues, M. de Pádula and B. A. M. C. Santos, Photoprotection assessment of olive (Olea europaea L.) leaves extract standardized to oleuropein: In vitro and in silico approach for improved sunscreens, J. Photoc. Photobio. B 193 (2019) 162–171; https://doi.org/10.1016/j.jphotobiol.2019.03.003 Search in Google Scholar

C. Zhang, J. Zhang, X. Xin, S. Zhu, E. Niu, Q. Wu, T. Li and D. Liu, Changes in phytochemical profiles and biological activity of olive leaves treated by two drying methods, Front. Nutr. 9 (2022) Article ID 854680 (14 pages); https://doi.org/10.3389/fnut.2022.854680 Search in Google Scholar

M. Losada-Echeberría, G. Naranjo, D. Malouche, A. Taamalli, E. Barrajón-Catalán and V. Micol, Influence of drying temperature and harvesting season on phenolic content and antioxidant and antiproliferative activities of olive (Olea europaea) leaf extracts, Int. J. Med. Sci. 24(1) (2022) Article ID 54 (12 pages); https://doi.org/10.3390/ijms24010054 Search in Google Scholar

D. Cör Andrejč, B. Butinar, Ž. Knez, K. Tomažič and M. Knez Marevci, The effect of drying methods and extraction techniques on oleuropein content in olive leaves, Plants 11(7) (2022) Article ID 865 (17 pages); https://doi.org/10.3390/plants11070865 Search in Google Scholar

M. L. Clodoveo, P. Crupi, A. Annunziato and F. Corbo, Innovative extraction technologies for development of functional ingredients based on polyphenols from olive leaves, Foods 11(1) (2021) Article ID 103 (26 pages); https://doi.org/10.3390/foods11010103 Search in Google Scholar

W. Medfai, M. del M. Contreras, A. Lama-Muñoz, R. Mhamdi, I. Oueslati and E. Castro, How cultivar and extraction conditions affect antioxidants type and extractability for olive leaves valorization, ACS Sustain. Chem. Eng. 8(13) (2020) 5107–5118; https://doi.org/10.1021/acssuschemeng.9b07175 Search in Google Scholar

P. Putnik, F. J. Barba, I. Španić, Z. Zorić, V. Dragović-Uzelac and D. Bursać Kovačević, Green extraction approach for the recovery of polyphenols from Croatian olive leaves (Olea europea), Food Bioprod. Process. 106 (2017) 19–28; https://doi.org/10.1016/j.fbp.2017.08.004 Search in Google Scholar

J. Ruzzolini, S. Peppicelli, E. Andreucci, F. Bianchini, A. Scardigli, A. Romani, G. la Marca, C. Nediani and L. Calorini, Oleuropein, the main polyphenol of Olea europaea leaf extract, has an anti-cancer effect on human BRAF melanoma cells and potentiates the cytotoxicity of current chemo-therapies, Nutrients 10(12) (2018) Article ID 1950 (17 pages); https://doi.org/10.3390/nu10121950 Search in Google Scholar

S. Rishmawi, F. Haddad, G. Dokmak and R. Karaman, A comprehensive review on the anti-cancer effects of oleuropein, Life 12(8) (2022) Article ID 1140 (18 pages); https://doi.org/10.3390/life12081140 Search in Google Scholar

J. Ahamad, I. Toufeeq, M. A. Khan, M. Sh. M. Ameen, E. T. Anwer, S. Uthirapathy, S. R. Mir and J. Ahmad, Oleuropein: A natural antioxidant molecule in the treatment of metabolic syndrome, Phytother. Res. 33(12) (2019) 3112–3128; https://doi.org/10.1002/ptr.6511 Search in Google Scholar

M. S. Butt, U. Tariq, Iahtisham-Ul-Haq, A. Naz and M. Rizwan, Neuroprotective effects of oleuropein: Recent developments and contemporary research, J. Food Biochem. 45(12) (2021) e13967 (26 pages); https://doi.org/10.1111/jfbc.13967 Search in Google Scholar

C. Nediani, J. Ruzzolini, A. Romani and L. Calorini, Oleuropein, a bioactive compound from Olea europaea L., as a potential preventive and therapeutic agent in non-communicable diseases, Anti-oxidants 8(12) (2019) Article ID 578 (26 pages); https://doi.org/10.3390/antiox8120578 Search in Google Scholar

R. Palmeri, L. Siracusa, M. Carrubba, L. Parafati, I. Proetto, F. Pesce and B. Fallico, Olive leaves, a promising byproduct of olive oil industry: Assessment of metabolic profiles and antioxidant capacity as a function of cultivar and seasonal change, Agronomy 12(9) (2022) Article ID 2007 (9 pages); https://doi.org/10.3390/agronomy12092007 Search in Google Scholar

Á. Guinda, J. M. Castellano, J. M. Santos-Lozano, T. Delgado-Hervás, P. Gutiérrez-Adánez and M. Rada, Determination of major bioactive compounds from olive leaf, LWT – Food Sci. Technol. 64(1) (2015) 431–438; https://doi.org/10.1016/j.lwt.2015.05.001 Search in Google Scholar

S. Feng, C. Zhang, L. Liu, Z. Xu, T. Chen, L. Zhou, M. Yuan, T. Li and C. Ding, Comparison of phenolic compounds in olive leaves by different drying and storage methods, Separations 8(9) (2021) Article ID 156 (10 pages); https://doi.org/10.3390/separations8090156 Search in Google Scholar

J. Ruzzolini, S. Peppicelli, F. Bianchini, E. Andreucci, S. Urciuoli, A. Romani, K. Tortora, G. Caderni, C. Nediani and L. Calorini, Cancer glycolytic dependence as a new target of olive leaf extract, Cancers 12(2) (2020) Article ID 317 (14 pages); https://doi.org/10.3390/cancers12020317 Search in Google Scholar

H. Shamshoum, F. Vlavcheski and E. Tsiani, Anticancer effects of oleuropein: Anticancer effects of oleuropein, BioFactors 43(4) (2017) 517–528; https://doi.org/10.1002/biof.1366 Search in Google Scholar

J. Yao, J. Wu, X. Yang, J. Yang, Y. Zhang and L. Du, Oleuropein induced apoptosis in HeLa cells via a mitochondrial apoptotic cascade associated with activation of the c-Jun NH2-terminal kinase, J. Pharmacol. Sci. 125(3) (2014) 300–311; https://doi.org/10.1254/jphs.14012FP Search in Google Scholar

B. Wang, S. Shen, J. Qu, Z. Xu, S. Feng, T. Chen and C. Ding, Optimizing total phenolic and oleuropein of chinese olive (Olea europaea) leaves for enhancement of the phenols content and antioxidant activity, Agronomy 11(4) (2021) Article ID 686 (17 pages); https://doi.org/10.3390/agronomy11040686 Search in Google Scholar

R. Pennisi, I. Ben Amor, B. Gargouri, H. Attia, R. Zaabi, A. B. Chira, M. Saoudi, A. Piperno, P. Trischitta, M. P. Tamburello and M. T. Sciortino, Analysis of Antioxidant and antiviral effects of olive (Olea europaea L.) leaf extracts and pure compound using cancer cell model, Biomolecules 13(2) (2023) Article ID 238 (17 pages); https://doi.org/10.3390/biom13020238 Search in Google Scholar

D. Vizza, S. Lupinacci, G. Toteda, F. Puoci, P. Ortensia I, A. De Bartolo, D. Lofaro, L. Scrivano, R. Bonofiglio, A. La Russa, M. Bonofiglio and A. Perri, An olive leaf extract rich in polyphenols promotes apoptosis in cervical cancer cells by upregulating p21 Cip/WAF1 gene expression, Nut. Cancer 71(2) (2019) 320–333; https://doi.org/10.1080/01635581.2018.1559934 Search in Google Scholar

W. L. Pereira, T. T. de Oliveira, M. Kanashiro, M. R. da Costa, L. M. da Costa and F. V. Borges, Cytotoxic activity of olive leaf extract against human melanoma (SK-MEL-5) and morin melanoma cell lines (B16F10), Biointerface Res. Appl. Chem. 6(1) (2016) 1026–1031. Search in Google Scholar

S. A. Mijatovic, G. S. Timotijevic, D. M. Miljkovic, J. M. Radovic, D. D. Maksimovic-Ivanic, D. P. Dekanski and S. D. Stosic-Grujicic, Multiple antimelanoma potential of dry olive leaf extract, Int. J. Canc. 128(8) (2011) 1955–1965; https://doi.org/10.1002/ijc.25526 Search in Google Scholar

D. Majumder, M. Debnath, K. V. Libin Kumar, P. Nath, R. Debnath, C. Sarkar, G. B. K. S. Prasad, Y. K. Verma and D. Maiti, Metabolic profiling and investigations on crude extract of Olea europaea L. leaves as a potential therapeutic agent against skin cancer, J. Funct. Foods 58 (2019) 266–274; https://doi.org/10.1016/j.jff.2019.05.005 Search in Google Scholar

A. Kishikawa, A. Ashour, Q. Zhu, M. Yasuda, H. Ishikawa and K. Shimizu, Multiple biological effects of olive oil by-products such as leaves, stems, flowers, olive milled waste, fruit pulp, and seeds of the olive plant on skin: Biological activities of olive oil by-products on skin, Phytother. Res. 29(6) (2015) 877–886; https://doi.org/10.1002/ptr.5326 Search in Google Scholar

O. Koprivnjak, E. Šetić, D. Lušić and Đ. Peršurić, Autochthonous olive cultivars in Istria (Croatia) – Morphological characteristics and oil quality // Proceedings of ECOLIVA - 1st International IFOAM Conference on Organic Olive Production/M. Pajaron, R. Munoz, M. Ojeda, V. G. Mariano (ed.). Jaen, Spain: Junta de Andalucia, 2002, pp. 599–605. Search in Google Scholar

D. Poljuha, B. Sladonja, K. Brkić Bubola, M. Radulović, K. Brščić, E. Šetić, M. Krapac and A. Milotić, A multidisciplinary approach to the characterisation of autochthonous Istrian olive (Olea europaea L.) varieties, Food Technol. Biotechnol. 46(4) (2008) 347–354. Search in Google Scholar

Expasy – SIB Bioinformatics Resource Portal, https://web.expasy.org/cellosaurus/CVCL_0132; last access date September 1, 2023. Search in Google Scholar

Expasy – SIB Bioinformatics Resource Portal, https://web.expasy.org/cellosaurus/CVCL_B222; last access date September 1, 2023. Search in Google Scholar

Expasy – SIB Bioinformatics Resource Portal, https://web.expasy.org/cellosaurus/CVCL_0038; last access date September 1, 2023. Search in Google Scholar

M. Amidžić, P. Marić, B. Fumić, R. Petlevski, K. Bljajić and M. Z. Končić, Oleuropein-rich olive leaf extracts may ameliorate consequences of glucose-induced oxidative stress in Hep G2 cells, Nat. Prod. Commun. 13 (2018) 657–660; https://doi.org/10.1177/1934578X1801300601 Search in Google Scholar

T. Gutfinger, Polyphenols in olive oils, J. Am. Oil Chem. Soc. 58 (1981) 966–968; https://doi.org/10.1007/BF02659771 Search in Google Scholar

J. Torić, A. Brozovic, M. Baus Lončar, C. Jakobušić Brala, A. Karković Marković, Đ. Benčić and M. Barbarić, Biological activity of phenolic compounds in extra virgin olive oils through their phenolic profile and their combination with anticancer drugs observed in human cervical carcinoma and colon adenocarcinoma cells, Antioxidants 9(5) (2020) Article ID 453 (15 pages); https://doi.org/10.3390/antiox9050453 Search in Google Scholar

R. Mateos, J. L. Espartero, M. Trujillo, J. J. Ríos, M. León-Camacho, F. Alcudia and A. Cert, Determination of phenols, flavones, and lignans in virgin olive oils by solid-phase extraction and high-performance liquid chromatography with diode array ultraviolet detection, J. Agric. Food Chem. 49 (2001) 2185–2192; https://doi.org/10.1021/jf0013205 Search in Google Scholar

D.-O. Kim, S. W. Jeong and C. Y. Lee, Antioxidant capacity of phenolic phytochemicals from various cultivars of plums, Food Chem. 81 (2003) 321–326; https://doi.org/10.1016/S0308-8146(02)00423-5 Search in Google Scholar

G. Mickisch, S. Fajta, G. Keilhauer, E. Schlick, R. Tschada and P. Alken, Chemosensitivity testing of primary human renal cell carcinoma by a tetrazolium based microculture assay (MTT), Urol. Res. 18 (1990) 131–136; https://doi.org/10.1007/BF00302474 Search in Google Scholar

GraphPad Prism. Available online: https://www.graphpad.com/scientific-software/prism/; last access date September 1, 2023. Search in Google Scholar

F. Nicolì, C. Negro, M. Vergine, A. Aprile, E. Nutricati, E. Sabella, A. Miceli, A. Luvisi and L. De Bellis, Evaluation of phytochemical and antioxidant properties of 15 Italian Olea europaea L. cultivar leaves, Molecules 24(10) (2019) Article ID 1998 (12 pages); https://doi.org/10.3390/molecules24101998 Search in Google Scholar

E. M. Kabbash, I. M. Ayoub, H. A. Gad, Z. T. Abdel-Shakour and S. H. El-Ahmady, Quality assessment of leaf extracts of 12 olive cultivars and impact of seasonal variation based on UV spectroscopy and phytochemcial content using multivariate analyses, Phytochem. Anal. 32(6) (2021) 932–941; https://doi.org/10.1002/pca.3036 Search in Google Scholar

M. Polić Pasković, N. Vidović, I. Lukić, P. Žurga, V. Majetić Germek, S. Goreta Ban, T. Kos, L. Čoga, T. Tomljanović, S. Simonić-Kocijan, D. Ban, S. Godena and I. Pasković, Phenolic potential of olive leaves from different Istrian cultivars in Croatia, Horticulturae 9(5) (2023) Article ID 594 (17 pages); https://doi.org/10.3390/horticulturae9050594 Search in Google Scholar

J. Giacometti, S. Milovanović, D. Jurčić Momčilović and M. Bubonja-Šonje, Evaluation of antioxidant activity of olive leaf extract obtained by ultrasound-assisted extraction and their antimicrobial activity against bacterial pathogens from food, Int. J. Food Sci. Tech. 56(10) (2021) 4843–4850; https://doi.org/10.1111/ijfs.15319 Search in Google Scholar

M. Kamran, A. S. Hamlin, C. J. Scott and H. K. Obied, Drying at high temperature for a short time maximizes the recovery of olive leaf biophenols, Ind. Crops Prod. 78 (2015) 29–38; https://doi.org/10.1016/j.indcrop.2015.10.031 Search in Google Scholar

A. L. S. Oliveira, S. Gondim, R. Gómez-García, T. Ribeiro and M. Pintado, Olive leaf phenolic extract from two Portuguese cultivars – bioactivities for potential food and cosmetic application, J. Environ. Chem. Eng. 9(5) (2021) Article ID 106175 (14 pages); https://doi.org/10.1016/j.jece.2021.106175 Search in Google Scholar

M. Moudache, F. Silva, C. Nerín and F. Zaidi, Olive cake and leaf extracts as valuable sources of antioxidant and antimicrobial compounds: a comparative study, Waste Biomass Valor. 12(3) (2021) 1431–1445; https://doi.org/10.1007/s12649-020-01080-8 Search in Google Scholar

E. M. Ramírez, M. Brenes, C. Romero and E. Medina, Olive leaf processing for infusion purposes, Foods 12(3) (2023) Article ID 591 (10 pages); https://doi.org/10.3390/foods12030591 Search in Google Scholar

M. E. Martínez-Navarro, C. Cebrián-Tarancón, J. Oliva, M. R. Salinas and G. L. Alonso, Oleuropein degradation kinetics in olive leaf and its aqueous extracts, Antioxidants 10(12) (2021) Article ID 1963 (11 pages); https://doi.org/10.3390/antiox10121963 Search in Google Scholar

M. H. Ahmad-Qasem, B. H. Ahmad-Qasem, E. Barrajón-Catalán, V. Micol, J. A. Cárcel and J. V. García-Pérez, Drying and storage of olive leaf extracts. Influence on polyphenols stability, Ind. Crop. Prod. 79 (2016) 232–239; https://doi.org/10.1016/j.indcrop.2015.11.006 Search in Google Scholar

B. Wang, J. Qu, S. Feng, T. Chen, M. Yuan, Y. Huang, J. Liao, R. Yang and C. Ding, Seasonal variations in the chemical composition of liangshan olive leaves and their antioxidant and anticancer activities, Foods 8(12) (2019) Article ID 657 (17 pages); https://doi.org/10.3390/foods8120657 Search in Google Scholar

H. Song, D. Y. Lim, J. I. Jung, H. J. Cho, S. Y. Park, G. T. Kwon, Y.-H. Kang, K. W. Lee, M.-S. Choi and J. H. Y. Park, Dietary oleuropein inhibits tumor angiogenesis and lymphangiogenesis in the B16F10 melanoma allograft model: a mechanism for the suppression of high-fat diet-induced solid tumor growth and lymph node metastasis, Oncotarget 8(19) (2017) 32027–32042; https://doi.org/10.18632/oncotarget.16757 Search in Google Scholar

P. De Cicco, G. Ercolano, G. C. Tenore and A. Ianaro, Olive leaf extract inhibits metastatic melanoma spread through suppression of epithelial to mesenchymal transition, Phytother. Res. 36(10) (2022) 4002–4013; https://doi.org/10.1002/ptr.7587 Search in Google Scholar

S. Goenka and S. R. Simon, A novel pro-melanogenic effect of standardized dry olive leaf extract on primary human melanocytes from lightly pigmented and moderately pigmented skin, Pharmaceuticals 14(3) (2021) Article ID 252 (14 pages); https://doi.org/10.3390/ph14030252 Search in Google Scholar

J. Y. Ha, H. K. Choi, M. J. Oh, H.-Y. Choi, C. S. Park, H. S. Shin, Photo-protective and anti-melanogenic effect from phenolic compound of olive leaf (Olea europaea L. var. Kalamata) extracts on the immortalized human keratinocytes and B16F1 melanoma cells, Food. Sci. Biotechnol. 18(5) (2009) 1193–1198. Search in Google Scholar

eISSN:
1846-9558
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Pharmazie, andere