Uneingeschränkter Zugang

Functionalization of selenium nanoparticles with olive polyphenols – impact on toxicity and antioxidative activity


Zitieren

M. Kieliszek, Selenium – fascinating microelement, properties and sources in food, Molecules 24(7) (2019) Article ID 1298 (14 pages); https://doi.org/10.3390/molecules24071298 Search in Google Scholar

S. J. Fairweather-Tait, Y. Bao, M. R. Broadley, R. Collings, D. Ford, J. E. Hesketh and R. Hurst, Selenium in human health and disease, Antioxid. Redox Signaling 14(7) (2011) 1337–1383; https://doi.org/10.1089/ars.2010.3275 Search in Google Scholar

Y. Mehdi, J. L. Hornick, L. Istasse and I. Dufrasne, Selenium in the environment, metabolism and involvement in body functions, Molecules 18(3) (2013) 3292–3231; https://doi.org/10.3390/molecules18033292 Search in Google Scholar

H. Y. Ha, N. Alfulaij, M. J. Berry and L. A. Seale, From selenium absorption to selenoprotein degradation, Biol. Trace Elem. Res. 192 (2019) 26–37; https://doi.org/10.1007/s12011-019-01771-x Search in Google Scholar

N. Hadrup and G. Ravn-Haren, Absorption, distribution, metabolism and excretion (ADME) of oral selenium from organic and inorganic sources: A review, J. Trace Elem. Med. Biol. 67 (2021) Article ID 126801 (12 pages); https://doi.org/10.1016/j.jtemb.2021.126801 Search in Google Scholar

K. L. Nutall, Evaluating selenium poisoning, Ann. Clin. Lab. Sci. 36(4) (2006) 409–420. Search in Google Scholar

N. Zakeri, M. R. Kelishadi, O. Asbaghi, F. Naeini, M. Afsharfar, E. Mirzadeh and S. Kasra Naserizadeh, Selenium supplementation and oxidative stress: A review, PharmaNutrition 17 (2021) Article ID 100263 (12 pages); https://doi.org/10.1016/j.phanu.2021.100263 Search in Google Scholar

M. Vinceti, T. Filippini, C. Del Giovane, G. Dennert, M. Zwahlen, M. Brinkman, M. P. A. Zeegers, M. Horneber, R. D’Amico and C. M. Crespi, Selenium for preventing cancer, Cochrane Database Syst. Rev. 1(1) (2018) 1–216; https://doi.org/10.1002/14651858.CD005195.pub4 Search in Google Scholar

C. D. Davis, Selenium supplementation and cancer prevention, Curr. Nutr. Rep. 1 (2012) 16–23; https://doi.org/10.1007/s13668-011-0003-x Search in Google Scholar

C. Ferro, H. F. Florindo and H. A. Santos, Selenium nanoparticles for biomedical applications: From development and characterization to therapeutics, Adv. Healthc. Mater. 10(16) (2021) Article ID 2100598 (50 pages); https://doi.org/10.1002/adhm.202100598 Search in Google Scholar

L. Guo, K. Huang and H. Liu, Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity, J. Nanoparticle Res. 18 (2016) 1–10; https://doi.org/10.1007/s11051-016-3357-6 Search in Google Scholar

J. S. Zhang, X. Y. Gao, L. De Zhang and Y. P. Bao, Biological effects of a nano red elemental selenium, BioFactors 15(1) (2001) 27–38; https://doi.org/10.1002/biof.5520150103 Search in Google Scholar

A. De Bruno, R. Romeo, F. L. Fedele, A. Sicari, A. Piscopo and M. Poiana, Antioxidant activity shown by olive pomace extracts, J. Environ. Sci. Heal. Part B 53 (8) (2018) 526–533; https://doi.org/10.1080/03601234.2018.1462928 Search in Google Scholar

D. V. Čepo, P. Albahari, Z. Končić, K. Radić, S. Jurmanović and M. Jug, Solvent extraction and chromatographic determination of polyphenols in olive pomace, Food Health Dis. 6 (1) (2017) 7–14; https://hrcak.srce.hr/clanak/269677 Search in Google Scholar

D. V. Čepo, K. Radić, S. Jurmanović, M. Jug, M. G. Rajković, S. Pedisić, T. Moslavac and P. Albahari, Valorization of olive pomace-based nutraceuticals as antioxidants in chemical, food, and biological models, Molecules 23(8) (2018) Article ID 2070 (22 pages); https://doi.org/10.3390/molecules23082070 Search in Google Scholar

P. Albahari, M. Jug, K. Radić, S. Jurmanović, M. Brnčić, S. R. Brnčić and D. Vitali Čepo, Characterization of olive pomace extract obtained by cyclodextrin-enhanced pulsed ultrasound assisted extraction, LWT-Food Sci. Technol. 92 (2018) 22–31; https://doi.org/10.1016/j.lwt.2018.02.011 Search in Google Scholar

K. Radić, I. Vinković Vrček, I. Pavičić and D. V. Čepo, Cellular antioxidant activity of olive pomace extracts: Impact of gastrointestinal digestion and cyclodextrin encapsulation, Molecules 25(21) (2020) Article ID 5027 (15 pages); https://doi.org/10.3390/molecules25215027 Search in Google Scholar

A. Silenzi, C. Giovannini, B. Scazzocchio, R. Varì, M. D’Archivio, C. Santangelo and R. Masella, Extra Virgin Olive Oil Polyphenols: Biological Properties and Antioxidant Activity, in Pathology – Oxidative Stress Dietary Antioxidants (Ed. V. R. Preedy), Elsevier Inc., Amsterdam 2020, pp. 225–233; https://doi.org/10.1016/C2017-0-04109-5 Search in Google Scholar

L. Melguizo-Rodríguez, R. Illescas-Montes, V. J. Costela-Ruiz, J. Ramos-Torrecillas, E. de Luna-Bertos, O. García-Martínez and C. Ruiz, Antimicrobial properties of olive oil phenolic compounds and their regenerative capacity towards fibroblast cells, J. Tissue Viabil. 30(3) (2021) 372–378; https://doi.org/10.1016/j.jtv.2021.03.003 Search in Google Scholar

E. Galić, K. Radić, N. Golub, D. Vitali Čepo, N. Kalčec, E. Vrček and T. Vinković, Utilization of olive pomace in green synthesis of selenium nanoparticles: Physico-chemical characterization, bioaccessibility and biocompatibility, Int. J. Mol. Sci. 23(16) (2022) Article ID 9128 (16 pages); https://doi.org/10.3390/ijms23169128 Search in Google Scholar

S. Menon, S. Devi K. S., R. Santhiya, S. Rajeshkumar and V. Kumar S., Selenium nanoparticles: A potent chemotherapeutic agent and an elucidation of its mechanism, Colloids Surf. B. 170 (2018) 280–292; https://doi.org/10.1016/j.colsurfb.2018.06.006 Search in Google Scholar

Y. Huang, L. He, W. Liu, C. Fan, W. Zheng, Y. S. Wong and T. Chen, Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles, Biomaterials 34(29) (2013) 7106–7116; https://doi.org/10.1016/j.biomaterials.2013.04.067 Search in Google Scholar

P. Sonkusre and S. S. Cameotra, Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation, J. Nanobiotechnol. 15(1) (2017) 1–12; https://doi.org/10.1186/s12951-017-0276-3 Search in Google Scholar

B. Yu, Y. Zhang, W. Zheng, C. Fan and T. Chen, Positive surface charge enhances selective cellular uptake and anticancer efficacy of selenium nanoparticles, Inorg. Chem. 51(16) (2012) 8956–8963; https://doi.org/10.1021/ic301050v Search in Google Scholar

A. Khurana, S. Tekula, M. A. Saifi, P. Venkatesh and C. Godugu, Therapeutic applications of selenium nanoparticles, Biomed. Pharmacother. 111 (2019) 802–812; https://doi.org/10.1016/j.biopha.2018.12.146 Search in Google Scholar

M. A. El-Ghazaly, N. Fadel, E. Rashed, A. El-Batal and S. A. Kenawy, Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats, Can. J. Physiol. Pharmacol. 95(2) (2016) 101–110; https://doi.org/10.1139/cjpp-2016-0183 Search in Google Scholar

Y. Li, X. Li, Y. S. Wong, T. Chen, H. Zhang, C. Liu and W. Zheng, The reversal of cisplatin-induced nephrotoxicity by selenium nanoparticles functionalized with 11-mercapto-1-undecanol by inhibition of ROS-mediated apoptosis, Biomaterials 32(34) (2011) 9068–9076; https://doi.org/10.1016/j.biomaterials.2011.08.001 Search in Google Scholar

A. Kumar and K. S. Prasad, Role of nano-selenium in health and environment, J. Biotechnol. 325 (2021) 152–163; https://doi.org/10.1016/j.jbiotec.2020.11.004 Search in Google Scholar

R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med. 26 (9–10) (1999) 1231–1237; https://doi.org/10.1016/s0891-5849(98)00315-3 Search in Google Scholar

E. A. Ainsworth and K. M. Gillespie, Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent, Nat. Protoc. 2 (2007) 875–877; https://doi.org/10.1038/nprot.2007.102 Search in Google Scholar

A. Aranda, L. Sequedo, L. Tolosa, G. Quintas, E. Burello, J. V. Castell and L. Gombau, Dichloro-di-hydro-fluorescein diacetate (DCFH-DA) assay: a quantitative method for oxidative stress assessment of nanoparticle-treated cells, Toxicol. In Vitro 27(2) (2013) 954–963; https://doi.org/10.1016/j.tiv.2013.01.016 Search in Google Scholar

D. Stevenson, D. Wokosin, J. Girkin and M. H. Grant, Measurement of the intracellular distribution of reduced glutathione in cultured rat hepatocytes using monochlorobimane and confocal laser scanning microscopy, Toxicol. Vitr. 16(5) (2002) 609–619; https://doi.org/10.1016/s0887-2333(02)00042-5 Search in Google Scholar

A. Galano and J. R. Alvarez-Idaboy, Glutathione: mechanism and kinetics of its non-enzymatic defense action against free radicals, RSC Adv. 1 (2011) 1763–1771; https://doi.org/10.1039/C1RA00474C Search in Google Scholar

S. Raj Rai, C. Bhattacharyya, A. Sarkar, S. Chakraborty, E. Sircar, S. Dutta and R. Sengupta, Glutathione: Role in oxidative/nitrosative stress, antioxidant defense, and treatments, ChemistrySelect 6(18) (2021) 4566–4590; https://doi.org/10.1002/slct.202100773 Search in Google Scholar

E. Galić, K. Ilić, S. Hartl, C. Tetyczka, K. Kasemets, I. Kurvet, M. Milić, R. Barbir, B. Pem, I. Erceg, M. Dutour Sikirić, I. Pavičić, E. Roblegg, A. Kahru and I. Vinković Vrček, Impact of surface functionalization on the toxicity and antimicrobial effects of selenium nanoparticles considering different routes of entry, Food Chem. Toxicol. 144 (2020) 111621; https://doi.org/10.1016/j.fct.2020.111621 Search in Google Scholar

H.-M. Shen, C.-F. Yang and C.-N. Ong, Sodium selenite-induced oxidative stress and apoptosis in human hepatoma HepG2 cells, J. Cancer 81(5) (1999) 820–828; https://doi.org/10.1002/(sici)1097-0215(19990531)81:5<820::aid-ijc25>3.0.co;2-f Search in Google Scholar

S. Zheng, X. Li, Y. Zhang, Q. Xie, Y. S. Wong, W. Zheng and T. Chen, PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction, Int. J. Nanomedicine 7 (2012) 3939–3949; https://doi.org/10.2147/IJN.S30940 Search in Google Scholar

L. Guo, J. Xiao, H. Liu and H. Liu, Selenium nanoparticles alleviate hyperlipidemia and vascular injury in ApoE-deficient mice by regulating cholesterol metabolism and reducing oxidative stress, Metallomics 12(2) (2020) 204–217; https://doi.org/10.1039/c9mt00215d Search in Google Scholar

D. Di, M. I. Tri Jevic, A. N. Drew, J. Shaw, A. Ander and T. Florence, Effects of some non-ionic surfactants on transepithelial permeability in Caco-2 cells, J. Pharm. Pharmacol. 52(2) (2010) 157–162; https://doi.org/10.1211/0022357001773805 Search in Google Scholar

T. Hua, X. Zhang, B. Tang, C. Chang, G. Liu, L. Feng, Y. Yu, D. Zhang and J. Hou, Tween-20 transiently changes the surface morphology of PK-15 cells and improves PCV2 infection, BMC Vet. Res. 14 (2018) 1–8; https://doi.org/10.1186/s12917-018-1457-5 Search in Google Scholar

A. Sukhanova, S. Bozrova, P. Sokolov, M. Berestovoy, A. Karaulov and I. Nabiev, Dependence of nanoparticle toxicity on their physical and chemical properties, Nanoscale Res. Lett. 13 (2018) 1–21; https://doi.org/10.1186/s11671-018-2457-x Search in Google Scholar

J. Zhou, D. Zhang, X. Lv, X. Liu, W. Xu, L. Chen, J. Cai, Z. U. Din and S. Cheng, Green synthesis of robust selenium nanoparticles via polysaccharide-polyphenol interaction: design principles and structure-bioactivity relationship, ACS Sustain. Chem. Eng. 10(6) (2022) 2052–2062; https://doi.org/10.1021/acssuschemeng.1c06048 Search in Google Scholar

L. Gunti, R. S. Dass and N. K. Kalagatur, Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: Antioxidant, antimicrobial, and biocompatibility, Front. Microbiol. 10 (2019) 1–17; https://doi.org/10.3389/fmicb.2019.00931 Search in Google Scholar

V. Alagesan and S. Venugopal, Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities, Bionanoscience 9 (2019) 105–116; https://doi.org/10.1007/s12668-018-0566-8 Search in Google Scholar

W. Y. Qiu, Y. Y. Wang, M. Wang and J. K. Yan, Construction, stability, and enhanced antioxidant activity of pectin-decorated selenium nanoparticles, Colloids Surfaces B Biointerfaces 170 (2018) 692–700; https://doi.org/10.1016/j.colsurfb.2018.07.003 Search in Google Scholar

Y. Liu, W. Huang, W. Han, C. Li, Z. Zhang, B. Hu, S. Chen, P. Cui, S. Luo, Z. Tang, W. Wu and Q. Luo, Structure characterization of Oudemansiella radicata polysaccharide and preparation of selenium nanoparticles to enhance the antioxidant activities, LWT-Food Sci. Technol. 146 (2021) Article ID 111469 (9 pages); https://doi.org/10.1016/j.lwt.2021.111469 Search in Google Scholar

Y. Cheng, X. Xiao, X. Li, D. Song, Z. Lu, F. Wang and Y. Wang, Characterization, antioxidant property and cytoprotection of exopolysaccharide-capped elemental selenium particles synthesized by Bacillus paralicheniformis SR14, Carbohydr. Polym. 178 (2017) 18–26; https://doi.org/10.1016/j.carbpol.2017.08.124 Search in Google Scholar

C. Xu, L. Qiao, Y. Guo, L. Ma and Y. Cheng, Preparation, characteristics and antioxidant activity of polysaccharides and proteins-capped selenium nanoparticles synthesized by Lactobacillus casei ATCC 393, Carbohydr. Polym. 195 (2018) 576–585; https://doi.org/10.1016/j.carbpol.2018.04 Search in Google Scholar

C. Thiry, A. Ruttens, L. Pussemier and Y. J. Schneider, An in vitro investigation of species-dependent intestinal transport of selenium and the impact of this process on selenium bioavailability, Br. J. Nutr. 109(12) (2013) 2126–2134; https://doi.org/10.1017/S0007114512004412 Search in Google Scholar

H. R. Shin, M. Kwak, T. G. Lee and J. Y. Lee, Quantifying the level of nanoparticle uptake in mammalian cells using flow cytometry, Nanoscale 12(29) (2020) 15743–15751; https://doi.org/10.1039/D0NR01627F Search in Google Scholar

X. Zhai, C. Zhang, G. Zhao, S. Stoll, F. Ren and X. Leng, Antioxidant capacities of the selenium nanoparticles stabilized by chitosan, J. Nanobiotechnol. 15 (2017) Article ID 4 (12 pages); https://doi.org/10.1186/s12951-016-0243-4 Search in Google Scholar

D. Song, Y. Cheng, X. Li, F. Wang, Z. Lu, X. Xiao and Y. Wang, Biogenic nanoselenium particles effectively attenuate oxidative stress-induced intestinal epithelial barrier injury by activating the Nrf2 antioxidant pathway, ACS Appl. Mater. Interfaces 9(17) (2017) 14724–14740; https://doi.org/10.1021/acsami.7b03377 Search in Google Scholar

eISSN:
1846-9558
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Pharmazie, andere