[
1. K. Korzeniewski, E. Bylicka-Szczepanowska and A. Lass, Prevalence of asymptomatic malaria infections in seemingly healthy children, the rural dzanga sangha region, Central African Republic, Int. J. Environ. Res. Public Health 18(2) (2021) Article ID 814 (14 pages); https://doi.org/10.3390/ijerph18020814783337433477889
]Search in Google Scholar
[
2. M. Rahi and A. Sharma, Malaria control initiatives that have the potential to be gamechangers in India’s quest for malaria elimination, Lancet Reg. Health – Southeast Asia 2 (2022) Article ID 100009 (12 pages); https://doi.org/10.1016/j.lansea.2022.04.005
]Search in Google Scholar
[
3. World Health Organization (WHO), World Malaria Report, 2021; https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021; last access date July 28, 2022
]Search in Google Scholar
[
4. L. Kurtovic, L. Reiling, D. H. Opi and J. G. Beeson, Recent clinical trials inform the future for malaria vaccines, Commun. Med. 1 (2021) Article ID 26 (5 pages); https://doi.org/10.1038/s43856-021-00030-2905326335602185
]Search in Google Scholar
[
5. M. S. Datoo, M. H. Natama, A. Somé, O. Traoré, T. Rouamba, D. Bellamy, P. Yameogo, D. Valia, M. Tegneri, F. Ouedraogo, R. Soma, S. Sawadogo, F. Sorgho, K. Derra, E. Rouamba, B. Orindi, F. Ramos Lopez, A. Flaxman, F. Cappuccini, R. Kailath, S. Elias, E. Mukhopadhyay, A. Noe, M. Cairns, A. Lawrie, R. Roberts, I. Valéa, H. Sorgho, N. Williams, G. Glenn, L. Fries, J. Reimer, K. J. Ewer, U. Shaligram, A. V. S. Hill and H. Tinto, Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial, Lancet 397 (2021) 1809–1818; https://doi.org/10.1016/S0140-6736(21)00943-0812176033964223
]Search in Google Scholar
[
6. Griffith University, Researchers Develop Broad-Spectrum Malaria Vaccine, Griffith News, 2021; https://news.griffith.edu.au/2021/10/21/researchers-develop-broad-spectrum-malaria-vaccine; last access date September 12, 2022
]Search in Google Scholar
[
7. E. Hughes, E. Wallender, A. M. Ali, P. Jagannathan and R. M. Savic, Malaria PK/PD and the role pharmacometrics can play in the global health arena: Malaria treatment regimens for vulnerable populations, Clin. Pharmacol. Ther. 110(4) (2021) 926–940; https://doi.org/10.1002/cpt.2238851842533763871
]Search in Google Scholar
[
8. A. L. Conroy, D. Datta and C. C. John, What causes severe malaria and its complications in children? Lessons learned over the past 15 years, BMC Med. 17 (2019) Article ID 52 (4 pages); https://doi.org/10.1186/s12916-019-1291-z640429330841892
]Search in Google Scholar
[
9. P. Patel, P. K. Bharti, D. Bansal, N. A. Ali, R. K. Raman, P. K. Mohapatra, R. Sehgal, J. Mahanta, A. A. Sultan and N. Singh, Prevalence of mutations linked to antimalarial resistance in Plasmodium falciparum from Chhattisgarh, Central India: A malaria elimination point of view, Sci. Rep. 7 (2017) Article ID 16690 (8 pages); https://doi.org/10.1038/s41598-017-16866-5570936229192183
]Search in Google Scholar
[
10. D. Menard and A. Dondorp, Antimalarial drug resistance: A threat to malaria elimination, Cold Spring Harb. Perspect. Med. 7 (2017) Article ID a025619 (24 pages); https://doi.org/10.1101/cshperspect.a025619549505328289248
]Search in Google Scholar
[
11. M. Mishra, V. K. Mishra, V. Kashaw, A. K. Iyer and S. K. Kashaw, Comprehensive review on various strategies for antimalarial drug discovery, Eur. J. Med. Chem. 125 (2017) 1300–1320; https://doi.org/10.1016/j.ejmech.2016.11.02527886547
]Search in Google Scholar
[
12. N. K. Sahu, S. Sahu and D. V. Kohli, Novel molecular targets for antimalarial drug development, Chem. Biol. Drug Des. 71(4) (2008) 287–297; https://doi.org/10.1111/j.1747-0285.2008.00640.x18298458
]Search in Google Scholar
[
13. E. G. Tse, M. Korsik and M. H. Todd, The past, present and future of anti-malarial medicines, Malar. J. 18 (2019) Article ID 93 (21 pages); https://doi.org/10.1186/s12936-019-2724-z643106230902052
]Search in Google Scholar
[
14. T. T. Diagana, Supporting malaria elimination with 21st century antimalarial agent drug discovery, Drug Discov. Today 20(10) (2015) 1265–1270; https://doi.org/10.1016/j.drudis.2015.06.00926103616
]Search in Google Scholar
[
15. Z. Mhlwatika and B. A. Aderibigbe, Polymeric nanocarriers for the delivery of antimalarials, Molecules 23(10) (2018) Article ID 2527 (15 pages); https://doi.org/10.3390/molecules23102527622230330279405
]Search in Google Scholar
[
16. P. J. Rosenthal, Antimalarial drug discovery: old and new approaches, J. Exp. Biol. 206(21) (2003) 3735–3744; https://doi.org/10.1242/jeb.0058914506208
]Search in Google Scholar
[
17. W. A. Cortopassi, T. C. Costa Franca and A. U. Krettli, A systems biology approach to antimalarial drug discovery, Expert Opin. Drug Discov. 13(7) (2018) 617–626; https://doi.org/10.1080/17460441.2018.147105629737894
]Search in Google Scholar
[
18. E. S. Mathews and A. R. Odom John, Tackling resistance: emerging antimalarials and new parasite targets in the era of elimination, F1000Res. 7 (2018) Article ID 1170 (11 pages); https://doi.org/10.12688/f1000research.14874.1607309030135714
]Search in Google Scholar
[
19. J. N. Burrows, S. Duparc, W. E. Gutteridge, R. Hooft van Huijsduijnen, W. Kaszubska, F. Macintyre, S. Mazzuri, J. J. Möhrle and T. N. C. Wells, New developments in anti-malarial target candidate and product profiles, Malar. J. 16 (2017) Article ID 26 (29 pages); https://doi.org/10.1186/s12936-016-1675-x523720028086874
]Search in Google Scholar
[
20. M. Duffey, B. Blasco, J. N. Burrows, T. N. C. Wells, D. A. Fidock and D. Leroy, Assessing risks of Plasmodium falciparum resistance to select next-generation antimalarials, Trends Parasitol. 37(8) (2021) 709–721; https://doi.org/10.1016/j.pt.2021.04.006828264434001441
]Search in Google Scholar
[
21. J. Oyelade, I. Isewon, O. Aromolaran, E. Uwoghiren, T. Dokunmu, S. Rotimi, O. Aworunse, O. Obembe and E. Adebiyi, Computational identification of metabolic pathways of Plasmodium falciparum using the k-shortest path algorithm, Int. J. Genom. 2019 (2019) Article ID 1750291 (13 pages); https://doi.org/10.1155/2019/1750291679120731662957
]Search in Google Scholar
[
22. D. A. Fidock, P. J. Rosenthal, S. L. Croft, R. Brun and S. Nwaka, Antimalarial drug discovery: efficacy models for compound screening, Nat. Rev. Drug Discov. 3(6) (2004) 509–520; https://doi.org/10.1038/nrd141615173840
]Search in Google Scholar
[
23. E. Comer, J. A. Beaudoin, N. Kato, M. E. Fitzgerald, R. W. Heidebrecht, M. duPont Lee, IV, D. Masi, M. Mercier, C. Mulrooney, G. Muncipinto, A. Rowley, K. Crespo-Llado, A. E. Serrano, A. K. Lukens, R. C. Wiegand, D. F. Wirth, M. A. Palmer, M. A. Foley, B. Munoz, C. A. Scherer, J. R. Duvall and S. L. Schreiber, Diversity-oriented synthesis-facilitated medicinal chemistry: Toward the development of novel antimalarial agents, J. Med. Chem. 57(20) (2014) 8496–8502; https://doi.org/10.1021/jm500994n420755325211597
]Search in Google Scholar
[
24. P. Aide, B. Candrinho, B. Galatas, K. Munguambe, C. Guinovart, F. Luis, A. Mayor, K. Paaijmans, L. Fernández-Montoya, L. Cirera, Q. Bassat, S. Mocumbi, C. Menéndez, D. Nhalungo, A. Nhacolo, R. Rabinovich, E. Macete, P. Alonso and F. Saúte, Setting the scene and generating evidence for malaria elimination in Southern Mozambique, Malaria J. 18(1) (2019) Article ID 190 (11 pages); https://doi.org/10.1186/s12936-019-2832-9655489231170984
]Search in Google Scholar
[
25. E. Deu, Proteases as antimalarial targets: strategies for genetic, chemical, and therapeutic validation, FEBS J. 284(16) (2017) 2604–2628; https://doi.org/10.1111/febs.14130557553428599096
]Search in Google Scholar
[
26. N. Kandepedu, D. Gonzàlez Cabrera, S. Eedubilli, D. Taylor, C. Brunschwig, L. Gibhard, M. Njoroge, N. Lawrence, T. Paquet, C. J. Eyermann, T. Spangenberg, G. S. Basarab, L. J. Street and K. Chibale, Identification, characterization, and optimization of 2,8-disubstituted-1,5-naphthyridines as novel Plasmodium falciparum phosphatidylinositol-4-kinase inhibitors with in vivo efficacy in a humanized mouse model of malaria, J. Med. Chem. 61(13) (2018) 5692–5703; https://doi.org/10.1021/acs.jmedchem.8b0064829889526
]Search in Google Scholar
[
27. C. W. McNamara, M. C. S. Lee, C. S. Lim, S. H. Lim, J. Roland, A. Nagle, O. Simon, B. K. S. Yeung, A. K. Chatterjee, S. L. McCormack, M. J. Manary, A.-M. Zeeman, K. J. Dechering, T. R. S. Kumar, P. P. Henrich, K. Gagaring, M. Ibanez, N. Kato, K. L. Kuhen, C. Fischli, M. Rottmann, D. M. Plouffe, B. Bursulaya, S. Meister, L. Rameh, J. Trappe, D. Haasen, M. Timmerman, R. W. Sauerwein, R. Suwanarusk, B. Russell, L. Renia, F. Nosten, D. C. Tully, C. H. M. Kocken, R. J. Glynne, C. Bodenreider, D. A. Fidock, T. T. Diagana and E. A. Winzeler, Targeting Plasmodium PI(4)K to eliminate malaria, Nature 504 (2013) 248–253; https://doi.org/10.1038/nature12782394087024284631
]Search in Google Scholar
[
28. Y. Younis, F. Douelle, T.-S. Feng, D. G. Cabrera, C. L. Manach, A. T. Nchinda, S. Duffy, K. L. White, D. M. Shackleford, J. Morizzi, J. Mannila, K. Katneni, R. Bhamidipati, K. M. Zabiulla, J. T. Joseph, S. Bashyam, D. Waterson, M. J. Witty, D. Hardick, S. Wittlin, V. Avery, S. A. Charman and K. Chibale, 3,5-Diaryl-2-aminopyridines as a novel class of orally active antimalarials demonstrating single dose cure in mice and clinical candidate potential, J. Med. Chem. 55(7) (2012) 3479–3487; https://doi.org/10.1021/jm300137322390538
]Search in Google Scholar
[
29. T. Paquet, C. L. Manach, D. G. Cabrera, Y. Younis, P. P. Henrich, T. S. Abraham, M. C. S. Lee, R. Basak, S. G. Disse, M. J. L. Monasterio, M. Bantscheff, A. Ruecker, A. M. Blagborough, S. E. Zakutansky, A. M. Zeeman, K. L. White, D. M. Shackleford, J. Mannila, J. Morizzi, C. Scheurer, I. A. Barturen, M. S. Martínez, S. Ferrer, L. M. Sanz, F. J. Gamo, J. Reader, M. Botha, K. J. Dechering, R. W. Sauerwein, A. Tungtaeng, P. Vanachayangkul, C. S. Lim, J. Burrows, M. J. Witty, K. C. Marsh, C. Bodenreider, R. Rochford, S. M. Solapure, M. B. J. Díaz, S. Wittlin, S. A. Charman, C. Donini, B. Campo, L. M. Birkholtz, K. K. Hanson, G. Drewes, C. H. M. Kocken, M. J. Delves, D. Leroy, D. A. Fidock, D. Waterson, L. J. Street and K. Chibale, Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase, Sci. Transl. Med. 9(387) (2017) Article ID 9735; https://doi.org/10.1126/scitranslmed.aad9735573145928446690
]Search in Google Scholar
[
30. A. Nagle, T. Wu, K. Kuhen, K. Gagaring, R. Borboa, C. Francek, Z. Chen, D. Plouffe, X. Lin, C. Caldwell, J. Ek, S. Skolnik, F. Liu, J. Wang, J. Chang, C. Li, B. Liu, T. Hollenbeck, T. Tuntland, J. Isbell, T. Chuan, P. B. Alper, C. Fischli, R. Brun, S. B. Lakshminarayana, M. Rottmann, T. T. Diagana, E. A. Winzeler, R. Glynne, D. C. Tully and A. K. Chatterjee, Imidazolopiperazines: Lead optimization of the second-generation antimalarial agents, J. Med. Chem. 55(9) (2012) 4244–4273; https://doi.org/10.1021/jm300041e335021822524250
]Search in Google Scholar
[
31. T. Wu, A. Nagle, K. Kuhen, K. Gagaring, R. Borboa, C. Francek, Z. Chen, D. Plouffe, A. Goh, S. B. Lakshminarayana, J. Wu, H. Q. Ang, P. Zeng, M. L. Kang, W. Tan, M. Tan, N. Ye, X. Lin, C. Caldwell, J. Ek, S. Skolnik, F. Liu, J. Wang, J. Chang, C. Li, T. Hollenbeck, T. Tuntland, J. Isbell, C. Fischli, R. Brun, M. Rottmann, V. Dartois, T. Keller, T. Diagana, E. Winzeler, R. Glynne, D. C. Tully and A. K. Chat-terjee, Imidazolopiperazines: Hit to lead optimization of new antimalarial agents, J. Med. Chem. 54(14) (2011) 5116–5130; https://doi.org/10.1021/jm2003359695021821644570
]Search in Google Scholar
[
32. D. Plouffe, A. Brinker, C. McNamara, K. Henson, N. Kato, K. Kuhen, A. Nagle, F. Adrián, J. T. Matzen, P. Anderson, T.-g. Nam, N. S. Gray, A. Chatterjee, J. Janes, S. F. Yan, R. Trager, J. S. Caldwell, P. G. Schultz, Y. Zhouand and E. A. Winzeler, In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen, Proc. Natl. Acad. Sci. 105(26) (2008) 9059–9064; https://doi.org/10.1073/pnas.0802982105244036118579783
]Search in Google Scholar
[
33. A. S. Bhagavathula, A. A. Elnour and A. Shehab, Alternatives to currently used antimalarial drugs: in search of a magic bullet, Infect. Dis. Poverty 5 (2016) Article ID 103 (12 pages); https://doi.org/10.1186/s40249-016-0196-8509599927809883
]Search in Google Scholar
[
34. C. Brunschwig, N. Lawrence, D. Taylor, E. Abay, M. Njoroge, G. S. Basarab, C. L. Manach, T. Paquet, D. G. Cabrera, A. T. Nchinda, C. de Kock, L. Wiesner, P. Denti, D. Waterson, B. Blasco, D. Leroy, M. J. Witty, C. Donini, J. Duffy, S. Wittlin, K. L. White, S. A. Charman, M. B. Jiménez-Díaz, I. Angulo-Barturen, E. Herreros, F. J. Gamo, R. Rochford, D. Mancama, T. L. Coetzer, M. E. van der Watt, J. Reader, L.-M. Birkholtz, K. C. Marsh, S. M. Solapure, J. E. Burke, J. A. McPhail, M. Vanaerschot, D. A. Fidock, P. V. Fish, P. Siegl, D. A. Smith, G. Wirjanata, R. Noviyanti, R. N. Price, J. Marfurt, K. D. Silue, L. J. Street and K. Chibale, UCT943, a next-generation Plasmodium falciparum PI4K inhibitor pre-clinical candidate for the treatment of malaria, Antimicrob. Agents Chemother. 62(9) (2018) e00012-00018; https://doi.org/10.1128/AAC.00012-18612552629941635
]Search in Google Scholar
[
35. N. J. White, T. T. Duong, C. Uthaisin, F. Nosten, A. P. Phyo, B. Hanboonkunupakarn, S. Pukrittayakamee, P. Jittamala, K. Chuthasmit, M. S. Cheung, Y. Feng, R. Li, B. Magnusson, M. Sultan, D. Wieser, X. Xun, R. Zhao, T. T. Diagana, P. Pertel and F. J. Leong, Antimalarial activity of kaf156 in Falciparum and Vivax malaria, New Engl. J. Med. 375(12) (2016) 1152–1160; https://doi.org/10.1056/NEJMoa1602250514260227653565
]Search in Google Scholar
[
36. J. P. Jain, F. J. Leong, L. Chen, S. Kalluri, V. Koradia, D. S. Stein, M.-C. Wolf, G. Sunkara and J. Kota, Bioavailability of lumefantrine is significantly enhanced with a novel formulation approach, an outcome from a randomized, open-label pharmacokinetic study in healthy volunteers, Antimicrob. Agents Chemother. 61(9) (2017) e00868-00817; https://doi:10.1128/AAC.00868-1710.1128/AAC.00868-17557134228630183
]Search in Google Scholar
[
37. E. A. Ashley, K. Stepniewska, N. Lindegårdh, R. McGready, A. Annerberg, R. Hutagalung, T. Sing-toroj, G. Hla, A. Brockman, S. Proux, J. Wilahphaingern, P. Singhasivanon, N. J. White and F. Nosten, Pharmacokinetic study of artemether-lumefantrine given once daily for the treatment of uncomplicated multidrug-resistant falciparum malaria, Trop. Med. Int. Health 12(2) (2007) 201–208; https://doi.org/10.1111/j.1365-3156.2006.01785.x17300626
]Search in Google Scholar
[
38. E. D. Crawford, J. Quan, J. A. Horst, D. Ebert, W. Wu and J. L. DeRisi, Plasmid-free CRISPR/Cas9 genome editing in Plasmodium falciparum confirms mutations conferring resistance to the dihydroisoquinolone clinical candidate SJ733, PLoS One 12(5) (2017) e0178163 (13 pages); https://doi.org/10.1371/journal.pone.0178163543970928542423
]Search in Google Scholar
[
39. C. Cheney, Global Malaria Report Reveals Africa’s Hits and Missed: Here’s What to Do; https://www.devex.com/news/fight-against-malaria-stalling-and-could-reverse-warns-2017-world-malaria-report-91636; last access date March 24, 2021
]Search in Google Scholar
[
40. G. D. Shanks, M. D. Edstein and D. Jacobus, Evolution from double to triple-antimalarial drug combinations, Trans. R. Soc. Trop. Med. Hyg. 109(3) (2015) 182–188; https://doi.org/10.1093/trstmh/tru19925549631
]Search in Google Scholar
[
41. N. J. Spillman, R. J. W. Allen, C. W. McNamara, B. K. S. Yeung, E. A. Winzeler, T. T. Diagana and K. Kirk, Na regulation in the malaria parasite Plasmodium falciparum involves the cation ATPase PfATP4 and is a target of the spiroindolone antimalarials, Cell Host Microbe 13(2) (2013) 227–237; https://doi.org/10.1016/j.chom.2012.12.006357422423414762
]Search in Google Scholar
[
42. M. Rottmann, C. McNamara, B. K. S. Yeung, M. C. S. Lee, B. Zou, B. Russell, P. Seitz, D. M. Plouffe, N. V. Dharia, J. Tan, S. B. Cohen, K. R. Spencer, G. E. González-Páez, S. B. Lakshminarayana, A. Goh, R. Suwanarusk, T. Jegla, E. K. Schmitt, H.-P. Beck, R. Brun, F. Nosten, L. Renia, V. Dartois, T. H. Keller, D. A. Fidock, E. A. Winzeler and T. T. Diagana, Spiroindolones, a potent compound class for the treatment of malaria, Science 329 (2010) 1175–1180; https://doi.org/10.1126/science.1193225305000120813948
]Search in Google Scholar
[
43. M. Tanner and D. de Savigny, Malaria eradication back on the table, Bull. World Health Org. 86(2) (2008) 82–83; https://doi.org/10.2471%2FBLT.07.050633
]Search in Google Scholar
[
44. J. S. McCarthy, A. N. Abd-Rahman, K. A. Collins, L. Marquart, P. Griffin, A. Kümmel, A. Fuchs, C. Winnips, V. Mishra, K. Csermak-Renner, J. P. Jain and P. Gandhi, Defining the antimalarial activity of cipargamin in healthy volunteers experimentally infected with blood-stage Plasmodium falciparum, Antimicrob. Agents Chemother. 65(2) e01423-01420; https://doi.org/10.1128/AAC.01423-20784901133199389
]Search in Google Scholar
[
45. S. H. I. Kappe, A. M. Vaughan, J. A. Boddey and A. F. Cowman, That was then but this is now: malaria research in the time of an eradication agenda, Science 328(5980) (2010) 862–866; https://:doi:10.1126/science.118478510.1126/science.118478520466924
]Search in Google Scholar
[
46. The malERA Consultative Group on Drugs, A research agenda for malaria eradication: Drugs, PLoS Med. 8(1) (2011) e1000402 (9 pages); https://doi.org/10.1371/journal.pmed.1000402302668821311580
]Search in Google Scholar
[
47. E. K. Schmitt, G. Ndayisaba, A. Yeka, K. P. Asante, M. P. Grobusch, E. Karita, H. Mugerwa, S. Asiimwe, A. Oduro, B. Fofana, S. Doumbia, G. Su, K. Csermak Renner, V. K. Venishetty, S. Sayyed, J. Straimer, I. Demin, S. Barsainya, C. Boulton and P. Gandhi, Efficacy of cipargamin (KAE609) in a randomized, phase ii dose-escalation study in adults in sub-saharan Africa with uncomplicated Plasmodium falciparum malaria, Clin. Infect. Dis. 74(10) (2022) 1831–1839; https://doi.org/10.1093/cid/ciab716915564234410358
]Search in Google Scholar
[
48. J. N. Burrows, R. Hooft van Huijsduijnen, J. J. Möhrle, C. Oeuvray and T. N. C. Wells, Designing the next generation of medicines for malaria control and eradication, Malaria J. 12(1) (2013) Article ID 187 (20 pages); https://doi.org/10.1186/1475-2875-12-187368555223742293
]Search in Google Scholar
[
49. W. A. Guiguemde, A. A. Shelat, D. Bouck, S. Duffy, G. J. Crowther, P. H. Davis, D. C. Smithson, M. Connelly, J. Clark, F. Zhu, M. B. Jiménez-Díaz, M. S. Martinez, E. B. Wilson, A. K. Tripathi, J. Gut, E. R. Sharlow, I. Bathurst, F. E. Mazouni, J. W. Fowble, I. Forquer, P. L. McGinley, S. Castro, I. Angulo-Barturen, S. Ferrer, P. J. Rosenthal, J. L. DeRisi, D. J. Sullivan, J. S. Lazo, D. S. Roos, M. K. Riscoe, M. A. Phillips, P. K. Rathod, W. C. Van Voorhis, V. M. Avery and R. K. Guy, Chemical genetics of Plasmodium falciparum, Nature 465(7296) (2010) 311–315; https://doi.org/10.1038/nature09099287497920485428
]Search in Google Scholar
[
50. M. B. Jiménez-Díaz, D. Ebert, Y. Salinas, A. Pradhan, M. Lehane Adele, M.-E. Myrand-Lapierre, K. G. O’Loughlin, D. M. Shackleford, M. Justino de Almeida, A. K. Carrillo, J. A. Clark, A. S.M. Dennis, J. Diep, X. Deng, S. Duffy, A. N. Endsley, G. Fedewa, W.A. Guiguemde, M. G. Gómez, G. Holbrook, J. Horst, C. C. Kim, J. Liu, M. C.S. Lee, A. Matheny, M. S. Martínez, G. Miller, A. Rodríguez-Alejandre, L. Sanz, M. Sigal, N. J. Spillman, P. D. Stein, Z. Wang, F. Zhu, D. Waterson, S. Knapp, A. Shelat, V. M. Avery, D. A. Fidock, F.-J. Gamo, S. A. Charman, J. C. Mirsalis, H. Ma, S. Ferrer, K. Kirk, I. Angulo-Barturen, D. E. Kyle, J. L. DeRisi, D. M. Floyd and R. K. Guy, (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium, Proc. Natl. Acad. Sci. 111(50) (2014) E5455-E5462; https://doi.org/10.1073/pnas.1414221111427336225453091
]Search in Google Scholar
[
51. N. J. Spillman and K. Kirk, The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs, Int. J. Parasitol. Drugs Drug Resist. 5(3) (2015) 149–162; https://doi.org/10.1016/j.ijpddr.2015.07.001455960626401486
]Search in Google Scholar
[
52. A. H. Gaur, J. S. McCarthy, J. C. Panetta, R. H. Dallas, J. Woodford, L. Tang, A. M. Smith, T. B. Stewart, K. C. Branum, B. B. Freeman 3rd, N. D. Patel, E. John, S. Chalon, S. Ost, R. N. Heine, J. L. Richardson, R. Christensen, P. M. Flynn, Y. Van Gessel, B. Mitasev, J. J. Möhrle, F. Gusovsky, L. Bebrevska and R. K. Guy, Safety, tolerability, pharmacokinetics, and antimalarial efficacy of a novel Plasmodium falciparum ATP4 inhibitor SJ733: a first-in-human and induced blood-stage malaria phase 1a/b trial, Lancet Infect. Dis. 20(8) (2020) 964–975; https://doi.org/10.1016/S1473-3099(19)30611-532275867
]Search in Google Scholar
[
53. J. E. O. Rosling, M. C. Ridgway, R. L. Summers, K. Kirk and A. M. Lehane, Biochemical characterization and chemical inhibition of PfATP4-associated Na(+)-ATPase activity in Plasmodium falciparum membranes, J. Biol. Chem. 293(34) (2018) 13327–13337; https://doi.org/10.1074/jbc.RA118.003640610992929986883
]Search in Google Scholar
[
54. R. Zhang, R. Suwanarusk, B. Malleret, B. M. Cooke, F. Nosten, Y.-L. Lau, M. Dao, C. T. Lim, L. Renia, K. S. W. Tan and B. Russell, A Basis for rapid clearance of circulating ring-stage malaria parasites by the spiroindolone KAE609, J. Infect. Dis. 213(1) (2015) 100–104; https://doi.org/10.1093/infdis/jiv358467654426136472
]Search in Google Scholar
[
55. S. B. Yadav, N. Chaturvedi and N. Marina, Recent advances in system based study for anti-malarial drug development process, Curr. Pharm. Des. 25(31) (2019) 3367–3377; https://doi.org/10.2174/138161282566619090216210531475893
]Search in Google Scholar
[
56. E. A. Ashley and A. P. Phyo, Drugs in development for malaria, Drugs 78(9) (2018) 861–879; https://doi.org/10.1007/s40265-018-0911-9601350529802605
]Search in Google Scholar
[
57. B. L. Tekwani and L. A. Walker, 8-Aminoquinolines: future role as antiprotozoal drugs, Curr. Opin. Infect. Dis. 19(6) (2006) 623–631; https://doi.org/10.1097/QCO.0b013e328010b84817075340
]Search in Google Scholar
[
58. S. Fonteilles-Drabek, D. Reddy and T. N. C. Wells, Managing intellectual property to develop medicines for the world’s poorest, Nat. Rev. Drug Discov. 16(4) (2017) 223–224; https://doi.org/10.1038/nrd.2017.2428232725
]Search in Google Scholar
[
59. Endemic countries in South America come together to discuss new tools for malaria elimination; Rio de Janeiro, Geneva and Seattle, October 30, 2020; https://www.mmv.org/sites/default/files/uploads/docs/press_releases/Zydus_and_MMV.pdf; last access date September 12, 2022
]Search in Google Scholar
[
60. S. Hameed P., S. Solapure, V. Patil, P. P. Henrich, P. A. Magistrado, S. Bharath, K. Murugan, P. Viswanath, J. Puttur, A. Srivastava, E. Bellale, V. Panduga, G. Shanbag, D. Awasthy, S. Landge, S. Morayya, K. Koushik, R. Saralaya, A. Raichurkar, N. Rautela, N. Roy Choudhury, A. Ambady, R. Nandishaiah, J. Reddy, K. R. Prabhakar, S. Menasinakai, S. Rudrapatna, M. Chatterji, M. B. Jiménez-Díaz, M. S. Martínez, L. M. Sanz, O. Coburn-Flynn, D. A. Fidock, A. K. Lukens, D. F. Wirth, B. Bandodkar, K. Mukherjee, R. E. McLaughlin, D. Waterson, L. Rosenbrier-Ribeiro, K. Hickling, V. Balasubramanian, P. Warner, V. Hosagrahara, A. Dudley, P. S. Iyer, S. Narayanan, S. Kavanagh and V. K. Sambandamurthy, Triaminopyrimidine is a fast-killing and long-acting antimalarial clinical candidate, Nat. Commun. 6(1) (2015) Article ID 6715 (11 pages); https://doi.org/10.1038/ncomms7715438922525823686
]Search in Google Scholar
[
61. D. M. Penarete-Vargas, A. Boisson, S. Urbach, H. Chantelauze, S. Peyrottes, L. Fraisse and H. J. Vial, A chemical proteomics approach for the search of pharmacological targets of the antimalarial clinical candidate albitiazolium in Plasmodium falciparum using photocrosslinking and click chemistry, PLoS One 9(12) (2014) e113918 (23 pages); https://doi.org/10.1371/journal.pone.0113918425474025470252
]Search in Google Scholar
[
62. S. Schiafino-Ortega, E. Baglioni, G. Pérez-Moreno, P. R. Marco, C. Marco, D. González-Pacanowska, L. M. Ruiz-Pérez, M. P. Carrasco-Jiménez and L. C. López-Cara, 1,2-Diphenoxiethane salts as potent antiplasmodial agents, Bioorg. Med. Chem. Lett. 28(14) (2018) 2485–2489; https://doi.org/10.1016/j.bmcl.2018.05.06029880399
]Search in Google Scholar
[
63. S. Wein, C. Tran Van Ba, M. Maynadier, Y. Bordat, J. Perez, S. Peyrottes, L. Fraisse and H. J. Vial, New insight into the mechanism of accumulation and intraerythrocytic compartmentation of albitiazolium, a new type of antimalarial, Antimicrob. Agents Chemother. 58(9) (2014) 5519–5527; https://doi.org/10.1128/AAC.00040-14413581825001307
]Search in Google Scholar
[
64. M. Xu, J. Zhu, Y. Diao, H. Zhou, X. Ren, D. Sun, J. Huang, D. Han, Z. Zhao, L. Zhu, Y. Xu and H. Li, Novel selective and potent inhibitors of malaria parasite dihydroorotate dehydrogenase: Discovery and optimization of dihydrothiophenone derivatives, J. Med. Chem. 56(20) (2013) 7911–7924; https://doi.org/10.1021/jm400938g24073986
]Search in Google Scholar
[
65. A. Llanos-Cuentas, M. Casapia, R. Chuquiyauri, J. C. Hinojosa, N. Kerr, M. Rosario, S. Toovey, R. H. Arch, M. A. Phillips, F. D. Rozenberg, J. Bath, C. L. Ng, A. N. Cowell, E. A. Winzeler, D. A. Fidock, M. Baker, J. J. Möhrle, R. Hooft van Huijsduijnen, N. Gobeau, N. Araeipour, N. Andenmatten, T. Rückle and S. Duparc, Antimalarial activity of single-dose DSM265, a novel plasmodium dihydroorotate dehydrogenase inhibitor, in patients with uncomplicated Plasmodium falciparum or Plasmodium vivax malaria infection: a proof-of-concept, open-label, phase 2a study, Lancet Infect. Dis. 18(8) (2018) 874–883; https://doi.org/10.1016/S1473-3099(18)30309-8606017329909069
]Search in Google Scholar
[
66. R. Gujjar, A. Marwaha, F. El Mazouni, J. White, K. L. White, S. Creason, D. M. Shackleford, J. Baldwin, W. N. Charman, F. S. Buckner, S. Charman, P. K. Rathodand M. A. Phillips, Identification of a metabolically stable triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice, J. Med. Chem. 52(7) (2009) 1864–1872; https://doi.org/10.1021/jm801343r274656819296651
]Search in Google Scholar
[
67. J. M. Coteron, M. Marco, J. Esquivias, X. Deng, K. L. White, J. White, M. Koltun, F. El Mazouni, S. Kokkonda, K. Katneni, R. Bhamidipati, D. M. Shackleford, I. Angulo-Barturen, S. B. Ferrer, M. B. Jiménez-Díaz, F.-J. Gamo, E. J. Goldsmith, W. N. Charman, I. Bathurst, D. Floyd, D. Matthews, J. N. Burrows, P. K. Rathod, S. A. Charman and M. A. Phillips, Structure-guided lead optimization of triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential, J. Med. Chem. 54 (2011) 5540–5561; https://doi.org/10.1021/jm200592f315609921696174
]Search in Google Scholar
[
68. R. Gujjar, F. El Mazouni, K. L. White, J. White, S. Creason, D. M. Shackleford, X. Deng, W. N. Char-man, I. Bathurst, J. Burrows, D. M. Floyd, D. Matthews, F. S. Buckner, S. A. Charman, M. A. Phillips and P. K. Rathod, Lead optimization of aryl and aralkyl amine-based triazolopyrimidine inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with antimalarial activity in mice, J. Med. Chem. 54 (2011) 3935–3949; https://doi.org/10.1021/jm200265b312436121517059
]Search in Google Scholar
[
69. J. S. McCarthy, J. Lotharius, T. Rückle, S. Chalon, M. A. Phillips, S. Elliott, S. Sekuloski, P. Griffin, C. L. Ng, D. A. Fidock, L. Marquart, N. S. Williams, N. Gobeau, L. Bebrevska, M. Rosario, K. Marsh and J. J. Möhrle, Safety, tolerability, pharmacokinetics, and activity of the novel long-acting antimalarial DSM265: a two-part first-in-human phase 1a/1b randomised study, Lancet Infect. Dis. 17 (2017) 626–635; https://doi.org/10.1016/S1473-3099(17)30171-8544641228363636
]Search in Google Scholar
[
70. M. A. Phillips, J. Lotharius, K. Marsh, J. White, A. Dayan, K. L. White, J. W. Njoroge, F. El Mazouni, Y. Lao, S. Kokkonda, D. R. Tomchick, X. Deng, T. Laird, S. N. Bhatia, S. March, C. L. Ng, D. A. Fidock, S. Wittlin, M. Lafuente-Monasterio, F. J. Gamo Benito, L. M. Sanz Alonso, M. Santos Martinez, M. Belen Jimenez-Diaz, S. Ferrer Bazaga, I. Angulo-Barturen, J. N. Haselden, J. Louttit, Yi Cui, A. Sridhar, A.-M. Zeeman, C. Kocken, R. Sauerwein, K. Dechering, V. M. Avery, S. Duffy, M. Delves, R. Sinden, A. Ruecker, K. S. Wickham, R. Rochford, J. Gahagen, L. Iyer, E. Riccio, J. Mirsalis, I. Bathhurst, T. Rueckle, X. Ding, B. Campo, D. Leroy, M. J. Rogers, P. K. Rathod, J. N. Burrows and S. A. Charman, A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria, Sci. Transl. Med. 7(296) (2015) p. 296ra111; https://doi.org/10.1126/scitranslmed.aaa6645453904826180101
]Search in Google Scholar
[
71. S. Dini, S. G. Zaloumis, D. J. Price, N. Gobeau, A. Kümmel, M. Cherkaoui, J. J. Moehrle, J. S. McCarthyand J. A. Simpson, Seeking an optimal dosing regimen for OZ439/DSM265 combination therapy for treating uncomplicated falciparum malaria, J. Antimicrob. Chemother. 76(9) (2021) 2325–2334; https://doi.org/10.1093/jac/dkab181836136834179977
]Search in Google Scholar
[
72. R. A. G. Reis, F. A. Calil, P. R. Feliciano, M. P. Pinheiro and M. C. Nonato, The dihydroorotate dehydrogenases: Past and present, Arch. Biochem. Biophys. 632 (2017) 175–191; https://doi.org/10.1016/j.abb.2017.06.01928666740
]Search in Google Scholar
[
73. M. M. Abdou, P. M. O’Neill, E. Amigues and M. Matziari, Structure-based bioisosteric design, synthesis and biological evaluation of novel pyrimidines as antiplasmodial antifolate agents, J. Saudi Chem. Soc. (2022) Article ID 101539 (in press); https://doi.org/10.1016/j.jscs.2022.101539
]Search in Google Scholar
[
74. Y. Yuthavong, B. Tarnchompoo, T. Vilaivan, P. Chitnumsub, S. Kamchonwongpaisan, S. A. Charman, D. N. McLennan, K. L. White, L. Vivas, E. Bongard, C. Thongphanchang, S. Taweechai, J. Vanichtanankul, R. Rattanajak, U. Arwon, P. Fantauzzi, J. Yuvaniyama, W. N. Charman and D. Matthews, Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target, Proc. Natl. Acad. Sci. 109 (2012) 16823–16828; https://doi.org/10.1073/pnas.1204556109347951123035243
]Search in Google Scholar
[
75. M. P. Anthony, J. N. Burrows, S. Duparc, J. Jmoehrle and T. N. C. Wells, The global pipeline of new medicines for the control and elimination of malaria, Malar. J. 11 (2012) Article ID 316 (25 pages); https://doi.org/10.1186/1475-2875-11-316347225722958514
]Search in Google Scholar
[
76. M. F. Chughlay, E. Rossignol, C. Donini, M. El Gaaloul, U. Lorch, S. Coates, G. Langdon, T. Hammond, J. Möhrle and S. Chalon, First-in-human clinical trial to assess the safety, tolerability and pharmacokinetics of P218, a novel candidate for malaria chemoprotection, Br. J. Clin. Pharmacol. 86(6) (2020) 1113–1124; https://doi.org/10.1111/bcp.1421
]Search in Google Scholar
[
77. T. M. Belete, Novel targets to develop new antibacterial agents and novel alternatives to antibacterial agents, Hum. Microbiome J. 11 (2019) Article ID 100052 (10 pages); https://doi.org/10.1016/j.humic.2019.01.001
]Search in Google Scholar
[
78. L. J. Goble, R. M. R. Adendorff, T. A. P. de Beer, L. L. Stephens and G. L. Blatch, The malarial drug target Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (PfDXR): development of a 3-D model for identification of novel, structural and functional features and for inhibitor screening, Protein Pept. Lett. 17(1) (2010) 109–120; https://doi.org/10.2174/09298661078990954820214634
]Search in Google Scholar
[
79. S. Oyakhirome, S. Issifou, P. Pongratz, F. Barondi, M. Ramharter, J. F. Kun, M. A. Missinou, B. Lell and P. G. Kremsner, Randomized controlled trial of fosmidomycin-clindamycin versus sulfadoxinepyrimethamine in the treatment of Plasmodium falciparum malaria, Antimicrob. Agents Chemother. 51(5) (2007) 1869–1871; https://doi.org/10.1128/AAC.01448-06185553717325227
]Search in Google Scholar
[
80. J. F. Fernandes, B. Lell, S. T. Agnandji, R. M. Obiang, Q. Bassat, P. G. Kremsner, B. Mordmüller and M. P. Grobusch, Fosmidomycin as an antimalarial drug: a meta-analysis of clinical trials, Future Microbiol. 10 (2015) 1375–1390; https://doi.org/10.2217/FMB.15.6026228767
]Search in Google Scholar
[
81. S. Borrmann, I. Lundgren, S. Oyakhirome, B. Impouma, P.-B. Matsiegui, A. A. Adegnika, S. Issifou, J. F. J. Kun, D. Hutchinson, J. Wiesner, H. Jomaa and P. G. Kremsner, Fosmidomycin plus clindamycin for treatment of pediatric patients aged 1 to 14 years with Plasmodium falciparum malaria, Antimicrob. Agents Chemother. 50(8) (2006) 2713–2718; https://doi.org/10.1128/AAC.00392-06153867816870763
]Search in Google Scholar
[
82. T. M. E. Davis, T.-Y. Hung, I.-K. Sim, H. A. Karunajeewa and K. F. Ilett, Piperaquine, Drugs 65 (2005) 75–87; https://doi.org/10.2165/00003495-200565010-0000415610051
]Search in Google Scholar
[
83. World Wide Antimalarial Resistance Network (WWARN) DP Study Group, The effect of dosing regimens on the antimalarial efficacy of dihydroartemisinin-piperaquine: a pooled analysis of individual patient data, PLoS Med. 10(12) (2013) e1001564 (17 pages); https://doi.org/10.1371/journal.pmed.1001564384899624311989
]Search in Google Scholar
[
84. G. Mombo-Ngoma, J. Remppis, M. Sievers, R. Zoleko Manego, L. Endamne, L. Kabwende, L. Veletzky, T. T. Nguyen, M. Groger, F. Lötsch, J. Mischlinger, L. Flohr, J. Kim, C. Cattaneo, D. Hutchinson, S. Duparc, J. Moehrle, T. P. Velavan, B. Lell, M. Ramharter, A. A. Adegnika, B. Mordmüller and P. G. Kremsner, Efficacy and safety of fosmidomycin–piperaquine as nonartemisinin-based combination therapy for uncomplicated Falciparum malaria: A single-arm, age de-escalation proof-of-concept study in Gabon, Clin. Infect. Dis. 66 (2018) 1823–1830; https://doi.org/10.1093/cid/cix112287
]Search in Google Scholar
[
85. B. Witkowski, V. Duru, N. Khim, L. S. Ross, B. Saintpierre, J. Beghain, S. Chy, S. Kim, S. Ke, N. Kloeung, R. Eam, C. Khean, M. Ken, K. Loch, A. Bouillon, A. Domergue, L. Ma, C. Bouchier, R. Leang, R. Huy, G. Nuel, J.-C. Barale, E. Legrand, P. Ringwald, D. A. Fidock, O. Mercereau-Puijalon, F. Ariey and D. Ménard, A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype&2013;genotype association study, Lancet Infect. Dis. 17 (2017) 174–183; https://doi.org/10.1016/S1473-3099(16)30415-7526679227818097
]Search in Google Scholar
[
86. C. M. Sheridan, V. E. Garcia, V. Ahyong and J. L. DeRisi, The Plasmodium falciparum cytoplasmic translation apparatus: a promising therapeutic target not yet exploited by clinically approved anti-malarials, Malaria J. 17 (2018) Article ID 465 (13 pages); https://doi.org/10.1186/s12936-018-2616-7629212830541569
]Search in Google Scholar
[
87. R. T. Eastman, J. White, O. Hucke, K. Yokoyama, C. L. M. J. Verlinde, M. A. Hast, L. S. Beese, M. H. Gelb, P. K. Rathod and W. C. Van Voorhis, Resistance mutations at the lipid substrate binding site of Plasmodium falciparum protein farnesyltransferase, Mol. Biochem. Parasitol. 152 (2007) 66–71; https://doi.org/10.1016/j.molbiopara.2006.11.012287594117208314
]Search in Google Scholar
[
88. K. E. Jackson, S. Habib, M. Frugier, R. Hoen, S. Khan, J. S. Pham, L. R.de Pouplana, M. Royo, M. A. S. Santos, A. Sharma and S. A. Ralph, Protein translation in Plasmodium parasites, Trends Parasitol. 27 (2011) 467–476; https://doi.org/10.1016/j.pt.2011.05.00521741312
]Search in Google Scholar
[
89. M. Rottmann, B. Jonat, C. Gumpp, S. K. Dhingra, M. J. Giddins, X. Yin, L. Badolo, B. Greco, D. A. Fidock, C. Oeuvray and T. Spangenberg, Preclinical antimalarial combination study of M5717, a Plasmodium falciparum elongation factor 2 inhibitor, and pyronaridine, a hemozoin formation inhibitor, Antimicrob. Agents Chemother. 64(4) (2020) e02181-19; https://doi.org/10.1128/AAC.02181-19717929732041711
]Search in Google Scholar
[
90. B. Baragaña, I. Hallyburton, M. C. S. Lee, N. R. Norcross, R. Grimaldi, T. D. Otto, W. R. Proto, A. M. Blagborough, S. Meister, G. Wirjanata, A. Ruecker, L. M. Upton, T. S. Abraham, M. J. Almeida, A. Pradhan, A. Porzelle, M. S. Martínez, J. M. Bolscher, A. Woodland, T. Luksch, S. Norval, F. Zuccotto, J. Thomas, F. Simeons, L. Stojanovski, M. Osuna-Cabello, P. M. Brock, T. S. Churcher, K. A. Sala, S. E. Zakutansky, M. B. Jiménez-Díaz, L. M. Sanz, J. Riley, R. Basak, M. Campbell, V. M. Avery, R. W. Sauerwein, K. J. Dechering, R. Noviyanti, B. Campo, J. A. Frearson, I. Angulo-Barturen, S. Ferrer-Bazaga, F. J. Gamo, P. G. Wyatt, D. Leroy, P. Siegl, M. J. Delves, D. E. Kyle, S. Wittlin, J. Marfurt, R. N. Price, R. E. Sinden, E. A. Winzeler, S. A. Charman, L. Bebrevska, D. W. Gray, S. Campbell, A. H. Fairlamb, P. A. Willis, J. C. Rayner, D. A. Fidock, K. D. Read and I. H. Gilbert, A novel multiple-stage antimalarial agent that inhibits protein synthesis, Nature 522 (2015) 315–320; https://doi.org/10.1038/nature14451470093026085270
]Search in Google Scholar
[
91. J. S. McCarthy, Ö. Yalkinoglu, A. Odedra, R. Webster, C. Oeuvray, A. Tappert, D. Bezuidenhout, M. J. Giddins, S. K. Dhingra, D. A. Fidock, L. Marquart, L. Webb, X. Yin, A. Khandelwal and W. M. Bagchus, Safety, pharmacokinetics, and antimalarial activity of the novel plasmodium eukaryotic translation elongation factor 2 inhibitor M5717: a first-in-human, randomised, placebo-controlled, double-blind, single ascending dose study and volunteer infection study, Lancet Infect. Dis. 21(12) (2021) 1713–1724; https://doi.org/10.1016/S1473-3099(21)00252-8861293634715032
]Search in Google Scholar
[
92. J. S. Armistead, I. B. H. Wilson, T. H. van Kuppevelt and R. R. Dinglasan, A role for heparan sulfate proteoglycans in Plasmodium falciparum sporozoite invasion of anopheline mosquito salivary glands, Biochem. J. 438 (2011) 475–483; https://doi.org/10.1042/BJ20110694317386621663594
]Search in Google Scholar
[
93. S. Saiwaew, J. Sritabal, N. Piaraksa, S. Keayarsa, R. Ruengweerayut, C. Utaisin, P. Sila, R. Niramis, R. Udomsangpetch, P. Charunwatthana, E. Pongponratn, S. Pukrittayakamee, A. M. Leitgeb, M. Wahl-gren, S. J. Lee, N. P. Day, N. J. White, A. M. Dondorp and K. Chotivanich, Effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum infected erythrocytes, PLoS One 12(3) (2017) e0172718 (15 pages); https://doi.org/10.1371/journal.pone.0172718533206328249043
]Search in Google Scholar
[
94. A. M. Leitgeb, P. Charunwatthana, R. Rueangveerayut, C. Uthaisin, K. Silamut, K. Chotivanich, P. Sila, K. Moll, S. J. Lee, M. Lindgren, E. Holmer, A. Färnert, M. S. Kiwuwa, J. Kristensen, C. Herder, J. Tarning, M. Wahlgren and A. M. Dondorp, Inhibition of merozoite invasion and transient de-sequestration by sevuparin in humans with Plasmodium falciparum malaria, PLoS One 12(12) (2017) e0188754 (19 pages); https://doi.org/10.1371/journal.pone.0188754573173429244851
]Search in Google Scholar
[
95. M. Batchvarova, S. Shan, R. Zennadi, M. Lindgren, A. Leitgeb, P. S. Tamsen and M. J. Telen, Sevuparin reduces adhesion of both sickle red cells and leukocytes to endothelial cells in vitro and inhibits vaso-occlusion in vivo, Blood 122(21) (2013) Article ID 182; https://doi.org/10.1182/blood.v122.21.182.182
]Search in Google Scholar
[
96. A. M. Vogt, A. Barragan, Q. Chen, F. Kironde, D. Spillmann and M. Wahlgren, Heparan sulfate on endothelial cells mediates the binding of Plasmodium falciparum-infected erythrocytes via the DBL1α domain of PfEMP1, Blood 101 (2003) 2405–2411; https://doi.org/10.1182/blood-2002-07-201612433689
]Search in Google Scholar
[
97. B. Coulibaly, M. Pritsch, M. Bountogo, P. E. Meissner, E. Nebié, C. Klose, M. Kieser, N. Berens-Riha, A. Wieser, S. B. Sirima, J. Breitkreutz, R. H. Schirmer, A. Sié, F. P. Mockenhaupt, C. Drakeley, T. Bousema and O. Müller, Efficacy and safety of triple combination therapy with artesunate-amodiaquine–methylene blue for falciparum malaria in children: A randomized controlled trial in Burkina Faso, J. Infect. Dis. 211 (2015) 689–697; https://doi.org/10.1093/infdis/jiu54025267980
]Search in Google Scholar
[
98. L. C. S. Pinheiro, L. M. Feitosa, F. F. D. Silveira and N. Boechat, Current antimalarial therapies and advances in the development of semi-synthetic artemisinin derivatives, Ann. Acad. Bras. Cienc. 90 (2018) 1251–1271; https://doi.org/10.1590/0001-376520182017083029873667
]Search in Google Scholar
[
99. B. Balikagala, N. Fukuda, M. Ikeda, O. T. Katuro, S.-I. Tachibana, M. Yamauchi, W. Opio, S. Emoto, D. A. Anywar, E. Kimura, N. M. Q. Palacpac, E. I. Odongo-Aginya, M. Ogwang, T. Horii and T. Mita, Evidence of artemisinin-resistant malaria in Africa, New Engl. J. Med. 385(13) (2021) 1163–1171; https://doi.org/10.1056/NEJMoa210174634551228
]Search in Google Scholar
[
100. S. J. Burgess, J. X. Kelly, S. Shomloo, S. Wittlin, R. Brun, K. Liebmann and D. H. Peyton, Synthesis, structure-activity relationship, and mode-of-action studies of antimalarial reversed chloroquine compounds, J. Med. Chem. 53(17) (2010) 6477–6489; https://doi.org/10.1021/jm1006484293991320684562
]Search in Google Scholar
[
101. S. J. Burgess, A. Selzer, J. X. Kelly, M. J. Smilkstein, M. K. Riscoe and D. H. Peyton, A chloroquine-like molecule designed to reverse resistance in Plasmodium falciparum, J. Med. Chem. 49(18) (2006) 5623–5625; https://doi.org/10.1021/jm060399n221573816942036
]Search in Google Scholar
[
102. K. Y. Fong and D. W. Wright, Hemozoin and antimalarial drug discovery, Future Med. Chem. 5(12) (2013) 1437–1450; https://doi.org/10.4155/fmc.13.113492819423919553
]Search in Google Scholar
[
103. G. Wirjanata, B. F. Sebayang, F. Chalfein, N. Prayoga, I. Handayuni, R. Noviyanti, E. Kenangalem, J. R. Poespoprodjo, S. J. Burgess, D. H. Peyton, R. N. Price and J. Marfurt, Contrasting ex vivo efficacies of “reversed chloroquine” compounds in chloroquine-resistant Plasmodium falciparum and P. vivax isolates, Antimicrob. Agents Chemother. 59(9) 5721–5726; https://doi.org/10.1128/AAC.01048-15453853126149984
]Search in Google Scholar
[
104. J. L. Vennerstrom, S. Arbe-Barnes, R. Brun, S. A. Charman, F. C. K. Chiu, J. Chollet, Y. Dong, A. Dorn, D. Hunziker, H. Matile, K. McIntosh, M. Padmanilayam, J. Santo Tomas, C. Scheurer, B. Scorneaux, Y. Tang, H. Urwyler, S. Wittlin and W. N. Charman, Identification of an antimalarial synthetic trioxolane drug development candidate, Nature 430(7002) (2004) 900–904; https://doi.org/10.1038/nature0277915318224
]Search in Google Scholar
[
105. P. Olliaro and T. N. Wells, The global portfolio of new antimalarial medicines under development, Clin. Pharmacol. Ther. 85(6) (2009) 584–595; https://doi.org/10.1038/clpt.2009.5119404247
]Search in Google Scholar
[
106. M. Enserink, If artemisinin drugs fail, what’s plan B?, Science 328(5980) (2010) 846–846; https://:doi:10.1126/science.328.5980.84610.1126/science.328.5980.84620466918
]Search in Google Scholar
[
107. M. Kimura, Y. Yamaguchi, S. Takada and K. Tanabe, Cloning of a Ca(2+)-ATPase gene of Plasmodium falciparum and comparison with vertebrate Ca(2+)-ATPases, J. Cell Sci. 104(4) (1993) 1129–1136; https://doi.org/10.1242/jcs.104.4.11298314897
]Search in Google Scholar
[
108. C. Boss, H. Aissaoui, N. Amaral, A. Bauer, S. Bazire, C. Binkert, R. Brun, C. Bürki, C.-L. Ciana, O. Corminboeuf, S. Delahaye, C. Dollinger, C. Fischli, W. Fischli, A. Flock, M.-C. Frantz, M. Girault, C. Grisostomi, A. Friedli, B. Heidmann, C. Hinder, G. Jacob, A. Le Bihan, S. Malrieu, S. Mamzed, A. Merot, S. Meyer, S. Peixoto, N. Petit, R. Siegrist, J. Trollux, T. Weller and S. Wittlin, Discovery and characterization of act-451840: an antimalarial drug with a novel mechanism of action, Chem. Med. Chem. 11(18) (2016) 1995–2014; https://doi.org/10.1002/cmdc.20160029827471138
]Search in Google Scholar
[
109. A. Le Bihan, R. de Kanter, I. Angulo-Barturen, C. Binkert, C. Boss, R. Brun, R. Brunner, S. Buch-mann, J. Burrows, K. J. Dechering, M. Delves, S. Ewerling, S. Ferrer, C. Fischli, F. J. Gamo-Benito, N. F. Gnädig, B. Heidmann, M. B. Jiménez-Díaz, D. Leroy, M. Santos Martínez, S. Meyer, J. J. Moehrle, C. L. Ng, R. Noviyanti, A. Ruecker, L. M. Sanz, R. W. Sauerwein, C. Scheurer, S. Schleiferboeck, R. Sinden, C. Snyder, J. Straimer, G. Wirjanata, J. Marfurt, R. N. Price, T. Weller, W. Fischli, D. A. Fidock, M. Clozel and S. Wittlin, Characterization of novel antimalarial compound ACT-451840: Preclinical assessment of activity and dose-efficacy modeling, PLoS Med. 13(10) (2016) e1002138 (24 pages); https://doi.org/10.1371/journal.pmed.1002138504978527701420
]Search in Google Scholar
[
110. A. Krause, J. Dingemanse, A. Mathis, L. Marquart, J. J. Möhrle and J. S. McCarthy, Pharmacokinetic/pharmacodynamic modelling of the antimalarial effect of actelion-451840 in an induced blood stage malaria study in healthy subjects, Br. J. Clin. Pharmacol. 82(2) (2016) 412–421; https://doi.org/10.1111/bcp.12962497215727062080
]Search in Google Scholar
[
111. Y. K. Zhang, J. J. Plattner, Y. R. Freund, E. E. Easom, Y. Zhou, J. Gut, P. J. Rosenthal, D. Waterson, F. J. Gamo, I. Angulo-Barturen, M. Ge, Z. Li, L. Li, Y. Jian, H. Cui, H. Wang and J. Yang, Synthesis and structure-activity relationships of novel benzoxaboroles as a new class of antimalarial agents, Bioorg. Med. Chem. Lett. 21(2) (2011) 644–651; https://doi.org/10.1016/j.bmcl.2010.12.03421195617
]Search in Google Scholar
[
112. Y.-K. Zhang, J. J. Plattner, E. E. Easom, R. T. Jacobs, D. Guo, Y. R. Freund, P. Berry, V. Ciaravino, J. C. L. Erve, P. J. Rosenthal, B. Campo, F.-J. Gamo, L. M. Sanz and J. Cao, Benzoxaborole antimalarial agents. part 5. lead optimization of novel amide pyrazinyloxy benzoxaboroles and identification of a preclinical candidate, J. Med. Chem. 60(13) (2017) 5889–5908; https://doi.org/10.1021/acs.jmedchem.7b0062128635296
]Search in Google Scholar
[
113. E. Sonoiki, C. L. Ng, M. C. S. Lee, D. Guo, Y.-K. Zhang, Y. Zhou, M. R. K. Alley, V. Ahyong, L. M. Sanz, M. J. Lafuente-Monasterio, C. Dong, P. G. Schupp, J. Gut, J. Legac, R. A. Cooper, F.-J. Gamo, J. DeRisi, Y. R. Freund, D. A. Fidock and P. J. Rosenthal, A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue, Nature Commun. 8 (2017) Article ID 14574 (11 pages); https://doi.org/10.1038/ncomms14574534345228262680
]Search in Google Scholar
[
114. S. Pegoraro, M. Duffey, T. D. Otto, Y. Wang, R. Rösemann, R. Baumgartner, S. K. Fehler, L. Lucan-toni, V. M. Avery, A. Moreno-Sabater, D. Mazier, H. J. Vial, S. Strobl, C. P. Sanchez and M. Lanzer, SC83288 is a clinical development candidate for the treatment of severe malaria, Nature Commun. 8(1) (2017) Article ID 14193 (15 pages); https://doi.org/10.1038/ncomms14193529032728139658
]Search in Google Scholar
[
115. M. Duffey, C. P. Sanchez and M. Lanzer, Profiling of the anti-malarial drug candidate SC83288 against artemisinins in Plasmodium falciparum, Malaria J. 17(1) (2018) Article ID 121 (10 pages); https://doi.org/10.1186/s12936-018-2279-4586163729558913
]Search in Google Scholar
[
116. W. Peters, B. L. Robinson and W. K. Milhous, The chemotherapy of rodent malaria. LI. Studies on a new 8-aminoquinoline, WR 238,605, Ann. Trop. Med. Parasitol. 87(6) (1993) 547–552; https://doi.org/10.1080/00034983.1993.118128098122915
]Search in Google Scholar
[
117. N. P. D. Nanayakkara, A. L. Ager, Jr., M. S. Bartlett, V. Yardley, S. L. Croft, I. A. Khan, J. D. McChesney and L. A. Walker, Antiparasitic activities and toxicities of individual enantiomers of the 8-amino-quinoline 8-[(4-amino-1-methylbutyl)amino]-6-methoxy-4-methyl-5-[3,4-dichlorophenoxy] quino-line succinate, Antimicrob. Agents Chemother. 52(6) (2008) 2130–2137; https://doi.org/10.1128/AAC.00645-07241577418378716
]Search in Google Scholar
[
118. S. Ramanathan-Girish, P. Catz, M. R. Creek, B. Wu, D. Thomas, D. J. Krogstad, D. De, J. C. Mirsalis and C. E. Green, Pharmacokinetics of the antimalarial drug, AQ-13, in rats and cynomolgus macaques, Int. J. Toxicol. 23(3) (2004) 179–189; https://doi.org/10.1080/1091581049047135215204721
]Search in Google Scholar
[
119. O. A. Koita, L. Sangaré, H. D. Miller, A. Sissako, M. Coulibaly, T. A. Thompson, S. Fongoro, Y. Diarra, M. Ba, A. Maiga, B. Diallo, D. M. Mushatt, F. J. Mather, J. G. Shaffer, A. H. Anwar and D. J. Krogstad, AQ-13, an investigational antimalarial, versus artemether plus lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria: a randomised, phase 2, non-inferiority clinical trial, Lancet Infect. Dis. 17(12) (2017) 1266–1275; https://doi.org/10.1016/S1473-3099(17)30365-1570080628916443
]Search in Google Scholar
[
120. F. Mzayek, H. Deng, F. J. Mather, E. C. Wasilevich, H. Liu, C. M. Hadi, D. H. Chansolme, H. A. Murphy, B. H. Melek, A. N. Tenaglia, D. M. Mushatt, A. W. Dreisbach, J. J. L. Lertora and D. J. Krogstad, Randomized dose-ranging controlled trial of AQ-13, a candidate antimalarial, and chloroquine in healthy volunteers, PLoS Clin. Trials 2(1) (2007) e6 (15 pages); https://doi.org/10.1371/journal.pctr.0020006176443417213921
]Search in Google Scholar
[
121. F. E. Sáenz, T. Mutka, K. Udenze, A. M. J. Oduola and D. E. Kyle, Novel 4-aminoquinoline analogs highly active against the blood and sexual stages of Plasmodium in vivo and in vitro, Antimicrob. Agents Chemother. 56(9) (2012) 4685–4692; https://doi.org/10.1128/AAC.01061-12342185222710117
]Search in Google Scholar
[
122. K. J. Ewer, K. Sierra-Davidson, A. M. Salman, J. J. Illingworth, S. J. Draper, S. Biswas and A. V. S. Hill, Progress with viral vectored malaria vaccines: A multi-stage approach involving unnatural immunity, Vaccine 33 (2015) 7444–7451; https://doi.org/10.1016/j.vaccine.2015.09.094468752626476366
]Search in Google Scholar
[
123. G. D. Shanks, Historical Review: Problematic malaria prophylaxis with quinine, Am. J. Trop. Med. 95(2) (2016) 269–272; https://doi.org/10.4269/ajtmh.16-0138497317027185766
]Search in Google Scholar
[
124. A. Lacava, Ocular complications of chloroquine and derivatives therapy, Arq. Bras. Oftalmol. 73(2010) 384–389; https://doi.org/10.1590/S0004-27492010000400019
]Search in Google Scholar
[
125. Y. R. Niu, B. Wei, B. Chen, L. H. Xu, X. Jing, C. L. Peng and T. Z. Ma, Amodiaquine-induced reproductive toxicity in adult male rats, Mol. Reprod. Dev. 83(2) (2016) 174–182; https://doi.org/10.1002/mrd.2260326647924
]Search in Google Scholar
[
126. T. M. Davis, T. Y. Hung, I. K. Sim, H. A. Karunajeewa and K. F. Ilett, Piperaquine: a resurgent anti-malarial drug, Drugs 65(1) (2005) 75–87; https://doi.org/10.2165/00003495-200565010-0000415610051
]Search in Google Scholar
[
127. K.-Y. Lu and E. R. Derbyshire, Tafenoquine: A step toward malaria elimination, Biochemistry 59(8) (2020) 911–920; https://doi.org/10.1021/acs.biochem.9b01105803483732073254
]Search in Google Scholar
[
128. R. González, U. Hellgren, B. Greenwood and C. Menéndez, Mefloquine safety and tolerability in pregnancy: a systematic literature review, Malaria J. 13 (2014) Article ID 75 (10 pages); https://doi.org/10.1186/1475-2875-13-75394261724581338
]Search in Google Scholar
[
129. G. Kokwaro, L. Mwai and A. Nzila, Artemether/lumefantrine in the treatment of uncomplicated falciparum malaria, Expert Opin. Pharmacother. 8(1) (2007) 75–94; https://doi.org/10.1517/14656566.8.1.7517163809
]Search in Google Scholar
[
130. S. R. Meshnick, Artemisinin: mechanisms of action, resistance and toxicity, Int. J. Parasitol. 32(13) (2002) 1655–1660; https://doi.org/10.1016/s0020-7519(02)00194-712435450
]Search in Google Scholar
[
131. G. L. Nixon, D. M. Moss, A. E. Shone, D. G. Lalloo, N. Fisher, P. M. O’Neill, S. A. Ward and G. A. Biagini, Antimalarial pharmacology and therapeutics of atovaquone, J. Antimicrob. Chemother. 68(5) (2013) 977–985; https://doi.org/10.1093/jac/dks504434455023292347
]Search in Google Scholar
[
132. A. Nzila, The past, present and future of antifolates in the treatment of Plasmodium falciparum i nfection, J. Antimicrob. Chemother. 57(6) (2006) 1043–1054; https://doi.org/10.1093/jac/dkl10416617066
]Search in Google Scholar
[
133. T. Gaillard, M. Madamet and B. Pradines, Tetracyclines in malaria, Malaria J. 14 (2015) Article ID 445 (10 pages); https://doi.org/10.1186/s12936-015-0980-0464139526555664
]Search in Google Scholar