1. bookVolumen 72 (2022): Heft 3 (September 2022)
28 Feb 2007
4 Hefte pro Jahr
access type Uneingeschränkter Zugang

Dasatinib enhances curcumin-induced cytotoxicity, apoptosis and protective autophagy in human schwannoma cells HEI-193: The role of Akt/mTOR/p70S6K signalling pathway

Online veröffentlicht: 13 Apr 2022
Volumen & Heft: Volumen 72 (2022) - Heft 3 (September 2022)
Seitenbereich: 403 - 414
Akzeptiert: 18 Oct 2021
28 Feb 2007
4 Hefte pro Jahr

The present study was carried out in human schwannoma cells (HEI-193) to determine the combined anti-cancer effect of curcumin and dasatinib. Cells were treated with curcumin only, dasatinib only, or the combination of curcumin and dasatinib for 24 hours. Cellular toxicity, cell proliferation, and cell death were determined by LDH, MTT, and trypan blue dye assays, respectively. ELISA based kit was used to determine apoptotic cell death. Western blotting was used to determine the expression of apoptotic and autophagy-associated protein markers. Similarly, expression levels of Akt/mTOR/p70S6K signalling pathway-related proteins were studied using Western blotting. Cell death and apoptosis were significantly higher in HEI-193 cells treated with curcumin and dasatinib combination compared to individual controls. The combination of curcumin and dasatinib significantly enhances autophagy markers compared to individual controls. Furthermore, the combination of curcumin and dasatinib significantly activates Akt/mTOR/p70S6K signalling pathway compared to individual controls. In conclusion, our results suggest that the combination of curcumin and dasatinib significantly enhances cytotoxicity, apoptosis, and protective autophagy in HEI-193 cells through Akt/mTOR/p70S6K signalling pathway.

1. R. R. Ramsay, M. R. Popovic-Nikolic, K. Nikolic, E. Uliassi and M. L. Bolognesi, A perspective on multi-target drug discovery and design for complex diseases, Clin. Transl. Med. 7(1) (2018) 3–16; https://doi.org/10.1186/s40169-017-0181-210.1186/s40169-017-0181-2577035329340951 Search in Google Scholar

2. R. B. Mokhtari, T. S. Homayouni, N. Baluch, E. Morgatskaya, S. Kumar, B. Das and H. Yeger, Combination therapy in combating cancer, Oncotarget 8(23) (2017) 38022–38043; https://doi.org/10.18632/oncotarget.1672310.18632/oncotarget.16723551496928410237 Search in Google Scholar

3. Y. Yamashita-Kashima, S. Iijima, K. Yorozu, K. Furugaki, M. Kurasawa, M. Ohta and K. Fujimoto-Ouchi, Pertuzumab in combination with trastuzumab shows significantly enhanced antitumor activity in HER2-positive human gastric cancer xenograft models, Clin. Cancer Res. 17(15) (2011) 5060–5070; https://doi.org/10.1158/1078-0432.CCR-10-292710.1158/1078-0432.CCR-10-292721700765 Search in Google Scholar

4. S. C. Gupta, S. Patchva, W. Koh and B. B. Aggarwal, Discovery of curcumin, a component of golden spice, and its miraculous biological activities, Clin. Exp. Pharmacol. Physiol. 39(3) (2012) 283–299; https://doi.org/10.1111/j.1440-1681.2011.05648.x10.1111/j.1440-1681.2011.05648.x328865122118895 Search in Google Scholar

5. A. Giordano and G. Tommonaro, Curcumin and cancer, Nutrients 11(10) (2019) Article ID 2376 (20 pages); https://doi.org/10.3390/nu1110237610.3390/nu11102376683570731590362 Search in Google Scholar

6. A. Hosseini and A. Ghorbani, Cancer therapy with phytochemicals: evidence from clinical studies, Avicenna J. Phytomed. 5(2) (2015) 84–97. Search in Google Scholar

7. A. Banerjee, A. Kunwar, B. Mishra and K. I. Priyadarsini, Concentration dependent antioxidant/pro-oxidant activity of curcumin studies from AAPH induced hemolysis of RBCs, Chemico-biol. Interact. 174(2) (2008) 134–139; https://doi.org/10.1016/j.cbi.2008.05.00910.1016/j.cbi.2008.05.00918571152 Search in Google Scholar

8. A. G. Miranda-Diaz, A. Garcia-Sanchez and E. G. Cardona-Munoz, Foods with potential prooxidant and antioxidant effects involved in Parkinson’s disease, Oxid. Med. Cell. Long. (2020) Article ID 6281454 (17 pages); https://doi.org/10.1155/2020/628145410.1155/2020/6281454742437432832004 Search in Google Scholar

9. H. Zhou, C. S. Beevers and S. Huang, The targets of curcumin, Curr. Drug Targ. 12(3) (2011) 332–347; https://doi.org/10.2174/13894501179481535610.2174/138945011794815356302506720955148 Search in Google Scholar

10. S. M. Johnson, P. Gulhati, I. Arrieta, X. Wang, T. Uchida, T. Gao and B. M. Evers, Curcumin inhibits proliferation of colorectal carcinoma by modulating Akt/mTOR signaling, Anticanc. Res. 29(8) (2009) 3185–3190. Search in Google Scholar

11. J. A. Bush, K. J. Cheung Jr. and G. Li, Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53, Exp. Cell Res. 271(2) (2001) 305–314; https://doi.org/10.1006/excr.2001.538110.1006/excr.2001.538111716543 Search in Google Scholar

12. M. Rivera, Y. Ramos, M. Rodriguez-Valentin, S. Lopez-Acevedo, L. A. Cubano, J. Zou, Q. Zhang, G. Wang and N. M. Boukli, Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells, PloS One 12(6) (2017) e0179587 (25 pages); https://doi.org/10.1371/journal.pone.017958710.1371/journal.pone.0179587547631528628644 Search in Google Scholar

13. Y. C. Chen, T. C. Kuo, S. Y. Lin-Shiau and J. K. Lin, Induction of HSP70 gene expression by modulation of Ca+2 ion and cellular p53 protein by curcumin in colorectal carcinoma cells, Mol. Carcinogen. 17(4) (1996) 224–234; https://doi.org/10.1002/(SICI)1098-2744(199612)17:4<224::AID-MC6>3.0.CO;2-D10.1002/(SICI)1098-2744(199612)17:4<224::AID-MC6>3.0.CO;2-D Search in Google Scholar

14. L. S. Angelo, J. Y. Wu, F. Meng, M. Sun, S. Kopetz, I. E. McCutcheon, J. M. Slopis and R. Kurzrock, Combining curcumin (diferuloylmethane) and heat shock protein inhibition for neurofibromatosis 2 treatment: analysis of response and resistance pathways, Mol. Cancer Therap. 10(11) (2011) 2094–2103; https://doi.org/10.1158/1535-7163.MCT-11-024310.1158/1535-7163.MCT-11-0243 Search in Google Scholar

15. S. Nam, A. Williams, A. Vultur, A. List, K. Bhalla, D. Smith, F. Y. Lee and R. Jove, Dasatinib (BMS-354825) inhibits Stat5 signaling associated with apoptosis in chronic myelogenous leukemia cells, Mol. Cancer Therap. 6(4) (2007) 1400–1405; https://doi.org/10.1158/1535-7163.MCT-06-044610.1158/1535-7163.MCT-06-0446 Search in Google Scholar

16. C. Zeng, L. Zhu, X. Jia, Y. Pang, Z. Li, X. Lu, F. Xie, L. Duan and Y. Wang, Spectrum of activity of dasatinib against mutant KIT kinases associated with drug-sensitive and drug-resistant gastrointestinal stromal tumors, Gastric Cancer 23(5) (2020) 837–847; https://doi.org/10.1007/s10120-020-01069-110.1007/s10120-020-01069-1 Search in Google Scholar

17. G. E. Konecny, R. Glas, J. Dering, K. Manivong, J. Qi, R. S. Finn, G. R. Yang, K. L. Hong, C. Ginther, B. Winterhoff, G. Gao, J. Brugge and D. J. Slamon, Activity of the multikinase inhibitor dasatinib against ovarian cancer cells, Brit. J. Cancer 101(10) (2009) 1699–1708; https://doi.org/10.1038/sj.bjc.660538110.1038/sj.bjc.6605381 Search in Google Scholar

18. Y. C. Lee, C. F. Huang, M. Murshed, K. Chu, J. C. Araujo, X. Ye, B. deCrombrugghe, L. Y. Yu-Lee, G. E. Gallick and S. H. Lin, Src family kinase/abl inhibitor dasatinib suppresses proliferation and enhances differentiation of osteoblasts, Oncogene 29(22) (2010) 3196–3207; https://doi.org/10.1038/onc.2010.7310.1038/onc.2010.73 Search in Google Scholar

19. I. Dikic, T. Johansen and V. Kirkin, Selective autophagy in cancer development and therapy, Cancer Res. 70(9) (2010) 3431–3434; https://doi.org/10.1158/0008-5472.CAN-09-402710.1158/0008-5472.CAN-09-4027 Search in Google Scholar

20. J. M. Zarzynska, The importance of autophagy regulation in breast cancer development and treatment, BioMed. Res. Int. 2014 (2014) Article ID 710345 (9 pages) https://doi.org/10.1155/2014/71034510.1155/2014/710345 Search in Google Scholar

21. L. Galluzzi, F. Pietrocola, J. M. Bravo-San Pedro, R. K. Amaravadi, E. H. Baehrecke, F. Cecconi, P. Codogno, J. Debnath, D. A. Gewirtz, V. Karantza, A. Kimmelman, S. Kumar, B. Levine, M. C. Maiuri, S. J. Martin, J. Penninger, M. Piacentini, D. C. Rubinsztein, H. U. Simon, A. Simonsen, A. M. Thorburn, G. Velasco, K. M. Ryan and G. Kroemer, Autophagy in malignant transformation and cancer progression, EMBO J. 34(7) (2015) 856–858; https://doi.org/10.15252/embj.20149078410.15252/embj.201490784 Search in Google Scholar

22. K. Wang, R. Liu, J. Li, J. Mao, Y. Lei, J. Wu, J. Zeng, J. T. Zhang, H. Wu, L. Chen, C. Huang and Y. Wei, Quercetin induces protective autophagy in gastric cancer cells: involvement of Akt-mTOR-and hypoxia-induced factor 1alpha-mediated signaling, Autophagy 7(9) (2011) 966–978; https://doi.org/10.4161/auto.7.9.1586310.4161/auto.7.9.15863 Search in Google Scholar

23. Y. Lin, K. Wang, C. Hu, L. Lin, S. Qin and X. Cai, Elemene injection induced autophagy protects human hepatoma cancer cells from starvation and undergoing apoptosis, Evid. Based Compl. Alternat. Med. 2014 (2014) Article ID 637528 (9 pages); https://doi.org/10.1155/2014/63752810.1155/2014/637528 Search in Google Scholar

24. S. F. Zhang, X. L. Wang, X. Q. Yang and N. Chen, Autophagy-associated targeting pathways of natural products during cancer treatment, Asian Pacific J. Cancer Prev. 15(24) (2014) 10557–10563; https://doi.org/10.7314/apjcp.2014.15.24.1055710.7314/APJCP.2014.15.24.10557 Search in Google Scholar

25. J. S. O’Donnell, D. Massi, M. W. L. Teng and M. Mandala, PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux, Sem. Cancer Biol. 48 (2018) 91–103; https://doi.org/10.1016/j.semcancer.2017.04.01510.1016/j.semcancer.2017.04.015 Search in Google Scholar

26. G. M. Nitulescu, M. Van De Venter, G. Nitulescu, A. Ungurianu, P. Juzenas, Q. Peng, O. T. Olaru, D. Gradinaru, A. Tsatsakis, D. Tsoukalas, D. A. Spandidos and D. Margina, The Akt pathway in oncology therapy and beyond, Int. J. Oncol. 53(6) (2018) 2319–2331; https://doi.org/10.3892/ijo.2018.459710.3892/ijo.2018.4597 Search in Google Scholar

27. K. A. West, S. S. Castillo and P. A. Dennis, Activation of the PI3K/Akt pathway and chemotherape utic resistance, Drug Resist. Updat. 5(6) (2002) 234–248; https://doi.org/10.1016/s1368-7646(02)00120-610.1016/S1368-7646(02)00120-6 Search in Google Scholar

28. C. H. Chang, C. Y. Lee, C. C. Lu, F. J. Tsai, Y. M. Hsu, J. W. Tsao, Y. N. Juan, H. Y. Chiu, J. S. Yang and C. C. Wang, Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: A key role of AMPK and Akt/mTOR signaling, Int. J. Oncol. 50(3) (2017) 873–882; https://doi.org/10.3892/ijo.2017.386610.3892/ijo.2017.386628197628 Search in Google Scholar

29. J. Xu, S. Zhang, R. Wang, X. Wu, L. Zeng and Z. Fu, Knockdown of PRDX2 sensitizes colon cancer cells to 5-FU by suppressing the PI3K/AKT signaling pathway, Biosci. Rep. 37(3) (2017) Article ID BSR20160447 (10 pages); https://doi.org/10.1042/BSR2016044710.1042/BSR20160447542628628432271 Search in Google Scholar

30. M. J. Hour, S. C. Tsai, H. C. Wu, M. W. Lin, J. G. Chung, J. B. Wu, J. H. Chiang, M. Tsuzuki and J. S. Yang, Antitumor effects of the novel quinazolinone MJ-33: inhibition of metastasis through the MAPK, AKT, NF-kappaB and AP-1 signaling pathways in DU145 human prostate cancer cells, Int. J. Oncol. 41(4) (2012) 1513–1519; https://doi.org/10.3892/ijo.2012.156010.3892/ijo.2012.156022825655 Search in Google Scholar

31. P. Lepont, J. T. Stickney, L. A. Foster, J. J. Meng, R. F. Hennigan and W. Ip, Point mutation in the NF2 gene of HEI-193 human schwannoma cells results in the expression of a merlin isoform with attenuated growth suppressive activity, Mutation Res. 637(1-2) (2008) 142–151; https://doi.org/10.1016/j.mrfmmm.2007.07.01510.1016/j.mrfmmm.2007.07.015223394017868749 Search in Google Scholar

32. A. A. Waza, K. Andrabi and M. U. Hussain, Protein kinase C (PKC) mediated interaction between conexin43 (Cx43) and K(+)(ATP) channel subunit (Kir6.1) in cardiomyocyte mitochondria: Implications in cytoprotection against hypoxia induced cell apoptosis, Cell. Signalling 26(9) (2014) 1909–1917; https://doi.org/10.1016/j.cellsig.2014.05.00210.1016/j.cellsig.2014.05.00224815185 Search in Google Scholar

33. R. M. Webster, Combination therapies in oncology, Nat. Rev. Drug Discov. 15(2) (2016) 81–82; https://doi.org/10.1038/nrd.2016.310.1038/nrd.2016.326837588 Search in Google Scholar

34. A. M. Alizadeh, M. Sadeghizadeh, F. Najafi, S. K. Ardestani, V. Erfani-Moghadam, M. Khaniki, A. Rezaei, M. Zamani, S. Khodayari, H. Khodayari and M. A. Mohagheghi, Encapsulation of curcumin in diblock copolymer micelles for cancer therapy, BioMed. Res. Int. 2015 (2015) Article ID 824746 (15 pages); https://doi.org/10.1155/2015/82474610.1155/2015/824746435245325793208 Search in Google Scholar

35. R. Chang, L. Sun and T. J. Webster, Short communication: selective cytotoxicity of curcumin on osteosarcoma cells compared to healthy osteoblasts, Int. J. Nanomed. 9 (2014) 461–465; https://doi.org/10.2147/IJN.S5550510.2147/IJN.S55505389413624453488 Search in Google Scholar

36. G. Wei, S. Rafiyath and D. Liu, First-line treatment for chronic myeloid leukemia: dasatinib, nilotinib, or imatinib, J. Hematol. Oncol. 3 (2010) Article ID 47 (10 pages); https://doi.org/10.1186/1756-8722-3-4710.1186/1756-8722-3-47300036921108851 Search in Google Scholar

37. H. Kantarjian, R. Pasquini, V. Levy, S. Jootar, J. Holowiecki, N. Hamerschlak, T. Hughes, E. Bleickardt, D. Dejardin, J. Cortes and N. P. Shah, Dasatinib or high-dose imatinib for chronic-phase chronic myeloid leukemia resistant to imatinib at a dose of 400 to 600 milligrams daily: two-year follow-up of a randomized phase 2 study (START-R), Cancer 115(18) (2009) 4136–4147; https://doi.org/10.1002/cncr.2450410.1002/cncr.24504534539119536906 Search in Google Scholar

38. T. Bartke, D. Siegmund, N. Peters, M. Reichwein, F. Henkler, P. Scheurich and H. Wajant, p53 upregulates cFLIP, inhibits transcription of NF-kappaB-regulated genes and induces caspase-8-independent cell death in DLD-1 cells, Oncogene 20(5) (2001) 571–580; https://doi.org/10.1038/sj.onc.120412410.1038/sj.onc.120412411313989 Search in Google Scholar

39. R. S. Wong, Apoptosis in cancer: from pathogenesis to treatment, J. Exp. Clin. Cancer Res. 30(1) (2011) Article ID 87 (14 pages); https://doi.org/10.1186/1756-9966-30-8710.1186/1756-9966-30-87319754121943236 Search in Google Scholar

40. L. Ouyang, Z. Shi, S. Zhao, F. T. Wang, T. T. Zhou, B. Liu and J. K. Bao, Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis, Cell Prolif. 45(6) (2012) 487–498; https://doi.org/10.1111/j.1365-2184.2012.00845.x10.1111/j.1365-2184.2012.00845.x649666923030059 Search in Google Scholar

41. M. B. Schaaf, T. G. Keulers, M. A. Vooijs and K. M. Rouschop, LC3/GABARAP family proteins: Autophagy(un)related functions, FASEB J. 30(12) (2016) 3961–3978; https://doi.org/10.1096/fj.201600698R10.1096/fj.201600698R27601442 Search in Google Scholar

42. M. S. Dong, S. H. Jung, H. J. Kim, J. R. Kim, L. X. Zhao, E. S. Lee, E. J. Lee, J. B. Yi, N. Lee, Y. B. Cho, W. J. Kwak and Y. I. Park, Structure-related cytotoxicity and anti-hepatofibric effect of asiatic acid derivatives in rat hepatic stellate cell-line, HSC-T6, Arch. Pharm. Res. 27(5) (2004) 512–517; https://doi.org/10.1007/BF0298012410.1007/BF0298012415202556 Search in Google Scholar

43. J. Han, X. Y. Pan, Y. Xu, Y. Xiao, Y. An, L. Tie, Y. Pan and X. Li, Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage, Autophagy 8(5) (2012) 812–825; https://doi.org/10.4161/auto.1947110.4161/auto.1947122622204 Search in Google Scholar

44. F. Guan, Y. Ding, Y. Zhang, Y. Zhou, M. Li and C. Wang, Curcumin suppresses proliferation and migration of MDA-MB-231 breast cancer cells through autophagy-dependent Akt degradation, PLoS ONE 11(1) (2016) e0146553; https://doi.org/10.1371/journal.pone.014655310.1371/journal.pone.0146553470899026752181 Search in Google Scholar

45. X. F. Le, W. Mao, Z. Lu, B. Z. Carter and R. C. Bast, Dasatinib induces autophagic cell death in human ovarian cancer, Cancer 116(21) (2010) 4980–4990; https://doi.org/10.1002/cncr.2542610.1002/cncr.25426297555520629079 Search in Google Scholar

46. H. J. Lee, V. G. V. Saralamma, S. M. Kim, S. E. Ha, S. Raha, W. S. Lee, E. H. Kim, S. J. Lee, J. D. Heo and G. S. Kim, Pectolinarigenin induced cell cycle arrest, autophagy, and apoptosis in gastric cancer cell via PI3K/AKT/mTOR signaling pathway, Nutrients 10(8) (2018) Article ID 1043 (15 pages); https://doi.org/10.3390/nu1008104310.3390/nu10081043611585530096805 Search in Google Scholar

47. K. Y. Kim, K. I. Park, S. H. Kim, S. N. Yu, S. G. Park, Y. W. Kim, Y. K. Seo, J. Y. Ma and S. C. Ahn, Inhibition of autophagy promotes salinomycin-induced apoptosis via reactive oxygen species-mediated PI3K/AKT/mTOR and ERK/p38 MAPK-dependent signaling in human prostate cancer cells, Int. J. Mol. Sci. 18(5) (2017) Article ID 1088 (15 pages); https://doi.org/10.3390/nu1008104310.3390/nu10081043 Search in Google Scholar

48. C. Rozzo, M. Fanciulli, C. Fraumene, A. Corrias, T. Cubeddu, I. Sassu, S. Cossu, V. Nieddu, G. Galleri, E. Azara, M. A. Dettori, D. Fabbri, G. Palmieri and M. Pisano, Molecular changes induced by the curcumin analogue D6 in human melanoma cells, Mol. Cancer 12 (2013) Article ID 37 (16 pages); https://doi.org/10.1186/1476-4598-12-3710.1186/1476-4598-12-37365172023642048 Search in Google Scholar

49. C. Porta, C. Paglino and A. Mosca, Targeting PI3K/Akt/mTOR signaling in cancer, Front. Oncol. 4 (2014) (11 pages); https://doi.org/10.3389/fonc.2014.0006410.3389/fonc.2014.00064399505024782981 Search in Google Scholar

50. B. Chen, X. Xu, J. Luo, H. Wang and S. Zhou, Rapamycin enhances the anti-cancer effect of dasatinib by suppressing Src/PI3K/mTOR pathway in NSCLC cells, PLoS ONE 10(6) (2015); https://doi.org/10.1371/journal.pone.012966310.1371/journal.pone.0129663446569426061184 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo