Uneingeschränkter Zugang

Piperazine sulfonamides as DPP-IV inhibitors: Synthesis, induced-fit docking and in vitro biological evaluation


Zitieren

1. D. Glovaci, W. Fan and N. D. Wong, Epidemiology of diabetes mellitus and cardiovascular disease, Curr. Cardiol. Rep.21 (2019) Article ID 21 (8 pages); https://doi.org/10.1007/s11886-019-1107-y10.1007/s11886-019-1107-ySearch in Google Scholar

2. N. Cho, J. Shaw, S. Karuranga, Y. Huang, D. da Rocha Fernandes, W. Ohlrogge and B. Malanda, IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045, Diabetes Res. Clin. Pract.138 (2018) 271–281; https://doi.org/10.1016/j.diabres.2018.02.02310.1016/j.diabres.2018.02.023Search in Google Scholar

3. A. Chaudhury, C. Duvoor, V. S. R. Dendi, S. Kraleti, A. Chada, R. Ravilla, A. Marco, N. S. Shekhawat, M. T. Montales, K. Kuriakose, A. Sasapu, A. Beebe, N. Patil, C. K. Musham, G. P. Lohani and W. Mirza, Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management, Front. Endocrinol. (Lausanne) 8 (Suppl 1) (2017) Article ID 6 (12 pages); https://doi.org/10.3389/fendo.2017.0000610.3389/fendo.2017.00006Search in Google Scholar

4. N. Sergeant, V. Vingtdeux, S. Eddarkaoui, M. Gay, C. Evrard, N. Le Fur and A. Farce, New piperazine multi-effect drugs prevent neurofibrillary degeneration and amyloid deposition, and preserve memory in animal models of Alzheimer’s disease, Neurobiol. Dis.129 (2019) 217–233; https://doi.org/10.1016/j.nbd.2019.03.02810.1016/j.nbd.2019.03.028Search in Google Scholar

5. M. Taha, M. Irshad, S. Imran, S. Chigurupati, M. Selvaraj, F. Rahim and K. Khan, Synthesis of piperazine sulfonamide analogs as diabetic-II inhibitors and their molecular docking study, Eur. J. Med. Chem.141 (2017) 530–537; https://doi.org/10.1016/j.ejmech.2017.10.02810.1016/j.ejmech.2017.10.028Search in Google Scholar

6. B. R. Rao, M. R. Katiki, K. Dileep, C. G. Kumar, G. N. Reddy, J. B. Nanubolu and M. S. R. Murty, Synthesis and biological evaluation of benzothiazole-piperazine-sulfonamide conjugates and their antibacterial and antiacetylcholinesterase activity, Lett. Org. Chem.16 (2019) 723–734; https://doi.org/10.2174/157017861566618111309453910.2174/1570178615666181113094539Search in Google Scholar

7. D. C. Martyn, J. F. Cortese, E. Tyndall, J. Dick, R. Mazitschek, B. Munoz and J. Clardy, Antiplasmo-dial activity of piperazine sulfonamides, Bioorg. Med. Chem. Lett.20 (2010) 218–221; https://doi.org/10.1016/j.bmcl.2009.10.13010.1016/j.bmcl.2009.10.130Search in Google Scholar

8. C. J. Bungard, P. D. Williams, J. Schulz, C. M. Wiscount, M. K. Holloway, H. M. Loughran and X. J. Chu, Design and synthesis of piperazine sulfonamide cores leading to highly potent HIV-1 protease inhibitors, ACS Med. Chem. Lett.8 (2017) 1292–1297; https://doi.org/10.1021%2Facsmedchemlett.7b0038610.1021/acsmedchemlett.7b00386Search in Google Scholar

9. R. Thoma, B. Löffler, M. Stihle, W. Huber, A. Ruf and M. Hennig, Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV, Structure11 (2003) 947–959; https://doi.org/10.1016/s0969-2126(03)00160-610.1016/S0969-2126(03)00160-6Search in Google Scholar

10. C. Deacon, Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes, Front. Endocrinol. (Lausanne) 10 (2019) Article ID 80 (14 pages); https://doi.org/10.3389/fendo.2019.0008010.3389/fendo.2019.00080638423730828317Search in Google Scholar

11. S. Q. Pantaleão, E. A. Philot, P. T. de Resende-Lara, A. N. Lima, D. Perahia, M. Atanassova Miteva, A. L. Scott and K. M. Honorio, structural dynamics of dpp-4 and its influence on the projection of bioactive ligands, Molecules23 (2018) Article ID 490 (10 pages); https://doi.org/10.3390/molecules2302049010.3390/molecules23020490601781929473857Search in Google Scholar

12. O. Power-Grant, A. B. Nongonierma, P. Jakeman and R. J. FitzGerald, Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes, Proc. Nutr. Soc.73 (2014) 34–46; https://doi.org/10.1017/S002966511300360110.1017/S002966511300360124131508Search in Google Scholar

13. M. Sano, Mechanism by which dipeptidyl peptidase-4 inhibitors increase the risk of heart failure and possible differences in heart failure risk, J. Cardiol.73 (2018) 28–32; https://doi.org/10.1016/j.jjcc.2018.07.00410.1016/j.jjcc.2018.07.00430318179Search in Google Scholar

14. Y. Nakamaru, F. Akahoshi, H. Iijima, N. Hisanaga and T. Kume, Tissue distribution of teneligliptin in rats and comparisons with data reported for other dipeptidyl peptidase-4 inhibitors, Biopharm. Drug Dispos.37 (2016) 142–155; https://doi.org/10.1002%2Fbdd.200310.1002/bdd.2003507424726749565Search in Google Scholar

15. R. N. Kushwaha, W. Haq and S. B. Katti, Sixteen-years of clinically relevant dipeptidyl peptidase-IV (DPP-IV) inhibitors for treatment of type-2 diabetes: a perspective, Curr. Med. Chem.21 (2014) 4013–4045; https://doi.org/10.2174/092986732166614091514330910.2174/092986732166614091514330925245373Search in Google Scholar

16. V. Gupta and S. Kalra, Choosing a gliptin, Indian J. Endocrinol. Metab15 (2011) 298–308; https://doi.org/10.4103%2F2230-8210.8558310.4103/2230-8210.85583Search in Google Scholar

17. J. Shubrook, R. Colucci, A. Guo and F. Schwartz, Saxagliptin: A selective DPP-4 inhibitor for the treatment of type 2 diabetes mellitus, Clin. Med. Insights Endocrinol. Diabetes4 (2011) 1–12; https://doi.org/10.4137/CMED.S511410.4137/CMED.S5114341154322879789Search in Google Scholar

18. T. Kadowaki and K. Kondo, Efficacy and safety of teneligliptin in combination with pioglitazone in Japanese patients with type 2 diabetes mellitus, J. Diabetes Investig.4 (2013) 576–584; https://doi.org/10.1111/jdi.1209210.1111/jdi.12092402025324843712Search in Google Scholar

19. T. Kadowaki and K. Kondo, Efficacy and safety of teneligliptin added to glimepiride in Japanese patients with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled study with an open-label, long-term extension, Diabetes Obes. Metab.16 (2014) 418–425; https://doi.org/10.1111/dom.1223510.1111/dom.1223524205974Search in Google Scholar

20. C. F. Deacon, Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: a comparative review, Diabetes Obes. Metab.13 (2011) 7–18; https://doi.org/10.1111/j.1463-1326.2010.01306.x10.1111/j.1463-1326.2010.01306.x21114598Search in Google Scholar

21. R. Abu Khalaf, G. Abu Sheikha, M. Al-Sha’er and M. Taha, Design, synthesis and biological evaluation of N4-sulfonamido-succinamic, phthalamic, acrylic and benzoyl acetic acid derivatives as potential DPP IV inhibitors, Open Med. Chem. J.7 (2013) 39–48; https://doi.org/10.2174/187410450130701003910.2174/1874104501307010039386662424358058Search in Google Scholar

22. R. Abu Khalaf, Z. Jarekji, T. Al-Qirim, D. Sabbah and G. Shattat, Pharmacophore modeling and molecular docking studies of acridines as potential DPP-IV inhibitors, Can. J. Chem.93 (2015) 721‒729; https://doi.org/10.1139/cjc-2015-003910.1139/cjc-2015-0039Search in Google Scholar

23. R. Abu Khalaf, D. Sabbah, E. Al-Shalabi, I. Al-Sheikh, G. Albadawi and G. Abu Sheikha, Synthesis, structural characterization and docking studies of sulfamoyl-phenyl acid esters as dipeptidyl peptidase-IV inhibitors, Curr. Comput. Aid. Drug Des.14 (2018) 142–151; https://doi.org/10.2174/157340991466618030816401310.2174/157340991466618030816401329521244Search in Google Scholar

24. R. A. Khalaf, D. Masalha and D. Sabbah, DPP-IV inhibitory phenanthridines: Ligand, structure-based design and synthesis, Curr. Comput. Aid. Drug Des.16 (2020) 295–307; https://doi.org/10.2174/157340991566618121111474310.2174/157340991566618121111474330526469Search in Google Scholar

25. J. M. Sutton, D. E. Clark, S. J. Dunsdon, G. Fenton, A. Fillmore, N. V. Harris, C. Higgs, C. A. Hurley, S. L. Krintel, R. E. MacKenzie, A. Duttaroy, E. Gangl, W. Maniara, R. Sedrani, K. Namoto, N. Oster-mann, B. Gerhartz, F. Sirockin, J. Trappe, U. Hassiepen and D. K. Baeschlin, Novel heterocyclic DPP-4 inhibitors for the treatment of type 2 diabetes, Bioorg. Med. Chem. Lett.22 (2012) 1464–1468; https://doi.org/10.1016/j.bmcl.2011.11.05410.1016/j.bmcl.2011.11.05422177783Search in Google Scholar

26. Protein Preparation Wizard, Maestro, Macromodel, QPLD-dock and Pymol, Schrödinger, LLC, Portland (OR), 2016; https://www.schrodinger.com/, last access July, 2020Search in Google Scholar

27. M. Smith and C. Pollard, New compounds. Derivatives of piperazine. XIX. Reactions with aryl sulfonyl chlorides and aryl sulfonic acids, J. Am. Chem. Soc.63 (1941) 630–631; https://pubs.acs.org/doi/abs/10.1021/ja01847a07610.1021/ja01847a076Search in Google Scholar

28. M. B. Boxer, J. Jiang, M. G. Vander Heiden, M. Shen, A. P. Skoumbourdis, N. Southall, H. Veith, W. Leister, C. P. Austin, H. Won Park, J. Inglese, L. C. Cantley, D. S. Auld and C. J. Thomas, Evaluation of substituted N, N′-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase, J. Med. Chem.53 (2010) 1048–1055; https://pubs.acs.org/doi/10.1021/jm901577g10.1021/jm901577g281880420017496Search in Google Scholar

29. R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, D. E. Shaw, P. Francis and P. S. Shenkin, Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy, J. Med. Chem.47 (2004) 1739–1749; https://doi.org/10.1021/jm030643010.1021/jm030643015027865Search in Google Scholar

30. R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgren, P. C. Sanscha-grin and D. T. Mainz, Extra precision glide: Docking and scoring incorporating a model of hydro-phobic enclosure for protein-ligand complexes, J. Med. Chem.49 (2006) 6177–6196; https://doi.org/10.1021/jm051256o10.1021/jm051256o17034125Search in Google Scholar

eISSN:
1846-9558
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Pharmazie, andere