Uneingeschränkter Zugang

Determination of carbohydrates in the herbal antidiabetic mixtures by GC-MC


Zitieren

1. M. Sakamoto, Type 2 diabetes and glycemic variability: various parameters in clinical practice, J. Clin. Med. Res. 10 (2018) 737–742; https://doi.org/10.14740/jocmr3556w10.14740/jocmr3556w613500130214644Search in Google Scholar

2. International Diabetes Federation, IDF Diabetes Atlas, 9th ed., Brussels 2019; http://www.diabetesatlas.orgSearch in Google Scholar

3. S. Gothai, P. Ganesan, S.-Y. Park, S. Fakurazi, D.-K. Choi and P. Arulselvan, Natural phyto-bioactive compounds for the treatment of type 2 diabetes: inflammation as a target, Nutrients8 (2016) Article ID 461; https://doi.org/10.3390/nu808046110.3390/nu8080461499737427527213Search in Google Scholar

4. P. Governa, G. Baini, V. Borgonetti, G. Cettolin, D. Giachetti, A. R. Magnano, E. Miraldi and M. Biagi, Phytotherapy in the management of diabetes: A review, Molecules23 (2018) Article ID 105; https://doi.org/10.3390/molecules2301010510.3390/molecules23010105601738529300317Search in Google Scholar

5. Y. S. Oh and H. S. Jun, Role of bioactive food components in diabetes prevention: effects on beta-cell function and preservation, Nutr. Metab. Ins.7 (2014) 51–59; https://doi.org/10.4137/NMI.S1358910.4137/NMI.S13589411637825092987Search in Google Scholar

6. W. Kooti, M. Farokhipour, Z. Asadzadeh, D. Ashtary-Larky and M. Asadi-Samani, The role of medicinal plants in the treatment of diabetes: a systematic review, Electr. Phys.8 (2016) 1832–1842; https://doi.org/10.19082/183210.19082/1832476893626955456Search in Google Scholar

7. J. S. Skyler, G. L. Bakris, E. Bonifacio, T. Darsow, R. H. Eckel, L. Groop, P. H. Groop, Y. Handelsman, R. A. Inse, C. Mathieu, A. T. McElvaine, J. P. Palmer, A. Pugliese, D. A. Schatz, J. M. Sosenko, J. P. Wilding and R. E. Ratner, Differentiation of diabetes by pathophysiology, Nat. Hist. Progn. Diab. 66 (2017) 241–255; https://doi.org/10.2337/db16-080610.2337/db16-0806538466027980006Search in Google Scholar

8. A. O. Savych, S. M. Marchyshyn, H. R. Kozyr and O. Y. Skrinchuk, Basic principles for the using of medicinal plants and their mixtures for the treatment and prevention of diabetes type 2, J. Phytother.4 (2019) 43–46: https://doi.org/10.33617/2522-9680-2019-4-43.10.33617/2522-9680-2019-4-43Search in Google Scholar

9. Y. S. Tovstuha, Golden Recipes of Ukrainian Folk Medicine, Kraina Mriy Publishers, Kyiv 2010, pp. 550.Search in Google Scholar

10. K. Ganesan and B. Xu, Anti-diabetic effects and mechanisms of dietary polysaccharides, Molecules24 (2019) Article ID 2556; https://doi.org/10.3390/molecules2414255610.3390/molecules24142556668088931337059Search in Google Scholar

11. X. Chen, L. Qian, B. Wang, Z. Zhang, H. Liu, Y. Zhang and J. Liu, Synergistic hypoglycemic effects of pumpkin polysaccharides and puerarin on type II diabetes mellitus mice, Molecules24 (2019) Article ID 955; https://doi.org/10.3390/molecules2405095510.3390/molecules24050955642909130857163Search in Google Scholar

12. X. Cui, S. Wang, H. Cao, H. Guo, Y. Li, F. Xu, M. Zheng, X. Xi and C. Han, A Review: The bioactivities and pharmacological applications of Polygonatum sibiricum polysaccharides, Molecules23 (2018) Article ID 1170; https://doi.org/10.3390/molecules2305117010.3390/molecules23051170609963729757991Search in Google Scholar

13. J.-F. Cui, H. Ye, Y.-J. Zhu, Y.-P. Li, J.-F. Wang and P. Wang, Characterization and hypoglycemic activity of a rhamnan-type sulfated polysaccharide derivative, Mar. Drug. 17 (2019) Article ID 21 (14 pages); https://doi.org/10.3390/md1701002110.3390/md17010021635678930609655Search in Google Scholar

14. Y. Luo, B. Peng, W. Wei, X. Tian and Z. Wu, Antioxidant and anti-diabetic activities of polysaccharides from guava leaves, Molecules24 (2019) Article ID 1343; https://doi.org/10.3390/molecules2407134310.3390/molecules24071343647991930959759Search in Google Scholar

15. T. Zhang, Y. Yang, Y. Liang, X. Jiao and C. Zhao, Beneficial effect of intestinal fermentation of natural polysaccharides, Nutrients10 (2018) Article ID 1055; https://doi.org/10.3390/nu1008105510.3390/nu10081055611602630096921Search in Google Scholar

16. D.-T. Wu, W. Liu, Q.-H. Han, P. Wang, X.-R. Xiang, Y. Ding, L. Zhao, Q. Zhang, S.-Q. Li and W. Qin, Extraction optimization, structural characterization, and antioxidant activities of polysaccharides from Cassia seed (Cassia obtusifolia), Molecules24 (2019) Article ID 2817; https://doi.org/10.3390/molecules2415281710.3390/molecules24152817669610531382366Search in Google Scholar

17. J. He, Y. Xu, H. Chen and P. Sun, Extraction, structural characterization, and potential antioxidant activity of the polysaccharides from four seaweeds, Int. J. Mol. Sci.17 (2016) Article ID 1988; https://doi.org/10.3390/ijms1712198810.3390/ijms17121988518778827916796Search in Google Scholar

18. R. Mistry, F. Gu, H. A. Schols, H. J. Verkade and U. Tietge, Effect of the prebiotic fiber inulin on cholesterol metabolism in wildtype mice, Sci. Rep. 8 (2018) Article ID 13238; https://doi.org/10.1038/s41598-018-31698-710.1038/s41598-018-31698-7612538030185894Search in Google Scholar

19. Y. Yuan, Q. Liu, F. Zhao, J. Cao, X. Shen and C. Li, Holothuria leucospilota polysaccharides ameliorate hyperlipidemia in high-fat diet-induced rats via short-chain fatty acids production and lipid metabolism regulation, Int. J. Mol. Sci. 20 (2019) Article ID 4738; https://doi.org/10.3390/ijms2019473810.3390/ijms20194738680198631554265Search in Google Scholar

20. Y. Neelakandan and A. Venkatesan, Antinociceptive and anti-inflammatory effect of sulfated polysaccharide fractions from Sargassum wightii and Halophila ovalis in male Wistar rats, Indian J. Pharmacol. 48 (2016) 562–570; https://doi.org/10.4103/0253-7613.19075410.4103/0253-7613.190754505125227721544Search in Google Scholar

21. A. O. Savych and S. M. Marchyshyn, Investigation of hypoglycemic activity of herbal antidiabetic mixtures widely used in folk medicine on normoglycemic animals, V All-Ukrainian Scientific-Practical Conference with International Participation «Chemistry of Natural Compounds», Ternopil State Medical University Publishers, Ternopil 2019, рр. 108–109.Search in Google Scholar

22. A. O. Savych and S. M. Marchyshyn, Investigation of antihyperglycemic activity of herbal antidiabetic mixtures used in folk medicine under conditions of alimentary hyperglycemia in rats, Scientific and Practical Internet-conference «Top Issues of Clinical Pharmacology and Clinical Pharmacy», National Pharmaceutical University Publishers, Kharkiv 2019, pp. 278–279.Search in Google Scholar

23. A. O. Savych and S. M. Marchyshyn, Screening study of antihyperglycemic activity of herbal antidiabetic mixtures used in folk medicine, International Scientific-Practical Conference Dedicated to the Memory of Doctor of Chemical Sciences, Professor Nina Maksyutina (to the 95th Anniversary). Planta+. Achievements and Prospects, Palyvoda Publishers, Kyiv 2020, pp. 222–224.Search in Google Scholar

24. World Health Organization, WHO Guidelines on Good Agricultural and Mixture Practices (GACP) for Medicinal Plants, WHO, Geneva 2003, pp. 72; https://apps.who.int/iris/handle/10665/42783; August 29, 2019.Search in Google Scholar

25. Y. F. Chen, M.-Y. Xie, Y.-X. Wang, S.-P. Nie and C. Li, Analysis of the monosaccharide composition of purified polysaccharides in Ganoderma atrum by capillary gas chromatography, J. Phytochem. Anal.20 (2009) 503–510; https://doi.org/10.1002/pca.115310.1002/pca.115319743070Search in Google Scholar

26. J. Guan, F.-Q. Yang and S.-P. Li, Evaluation of carbohydrates in natural and cultured Cordyceps by pressurized liquid extraction and gas chromatography coupled with mass spectrometry, Molecules15 (2010) 4227–4241; https://doi.org/10.3390/molecules1506422710.3390/molecules15064227626424820657437Search in Google Scholar

27. C. Agius, S. Tucher, B. Poppenberger and W. Rozhon, Quantification of sugars and organic acids in tomato fruits, MethodsX5 (2018) 537–550; https://doi.org/10.1016/j.mex.2018.05.01410.1016/j.mex.2018.05.014604660730023316Search in Google Scholar

28. M. Gupta, Sugar substitutes: mechanism, availability, current use and safety concerns-an update, Mac. J. Med. Sci.6 (2018) 1888–1894; https://doi.org/10.3889/oamjms.2018.33610.3889/oamjms.2018.336623605230455769Search in Google Scholar

29. S. H. Bates, R. B. Jones and C. J. Bailey, Insulin-like effect of pinitol, Br. J. Pharmacol.130 (2000) 1944–1948; https://doi.org/10.1038/sj.bjp.070352310.1038/sj.bjp.0703523157227810952686Search in Google Scholar

30. D. R. Chhetri, Myo-inositol and its derivatives: Their emerging role in the treatment of human diseases, Front. Pharmacol. 10 (2019) Article ID 1172 (8 pages); https://doi.org/10.3389/fphar.2019.0117210.3389/fphar.2019.01172679808731680956Search in Google Scholar

31. E. Benelli, S. Del Ghianda, C. Di Cosmo and M. Tonacchera, A combined therapy with myoinositol and D-chiro-inositol improves endocrine parameters and insulin resistance in PCOS young overweight women, Int. J. Endocrinol.2016 (2016) Article ID 3204083 (5 pages); https://doi.org/10.1155/2016/320408310.1155/2016/3204083496357927493664Search in Google Scholar

eISSN:
1846-9558
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Pharmazie, andere