Uneingeschränkter Zugang

Quantitative analysis and pharmacokinetic study of a novel diarylurea EGFR inhibitor (ZCJ14) in rat plasma using a validated LC-MS/MS method


Zitieren

1. N. Marcoux, S. N. Gettinger, G. O. Kane, K. C. Arbour, F. A. Shepherd, Z. Piotrowska and L. V. Sequist, EGFR-mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: clinical outcomes, J. Clin. Oncol.37 (2019) 278–285; https://doi.org/10.1200/JCO.18.0158510.1200/JCO.18.01585700177630550363Search in Google Scholar

2. M. M. Moasser, Targeting the function of the HER2 oncogene in human cancer therapeutics, Oncogene26 (2007) 6577–6592; https://doi.org/10.1038/sj.onc.121047810.1038/sj.onc.1210478307158017486079Search in Google Scholar

3. C. Yewale, D. Baradia, I. Vhora, S. Patil and A. Misra, Epidermal growth factor receptor targeting in cancer: a review of trends and strategies, Biomaterials34 (2013) 8690–8707; https://doi.org/10.1016/j.biomaterials.2013.07.10010.1016/j.biomaterials.2013.07.10023953842Search in Google Scholar

4. T. Ishikawa, M. Seto, H. Banno, Y. Kawakita, M. Oorui, A. Nakayama, H. Miki, H. Kamiguchi, T. Tanaka, N. Habuka, S. Sogabe, J. Yano, K. Aertgeerts and K. Kamiyama, Design and synthesis of novel human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo[3,2-d]pyrimidine scaffold, J. Med. Chem.54 (2011) 8030–8050; https://doi.org/10.1021/jm200863410.1021/jm200863422003817Search in Google Scholar

5. S. Kamath and J. K. Buolamwini, Targeting EGFR and HER-2 receptor tyrosine kinases for cancer drug discovery and development, Med. Res. Rev. 26 (2006) 569–594; https://doi.org/10.1002/med.2007010.1002/med.2007016788977Search in Google Scholar

6. E. Avizienyte, R. A. Ward and A. P. Garner, Comparison of the EGFR resistance mutation profiles generated by EGFR-targeted tyrosine kinase inhibitors and the impact of drug combinations, Biochem. J. 415 (2008) 197–206; https://doi.org/10.1042/BJ2008072810.1042/BJ2008072818588508Search in Google Scholar

7. Y. B. Li, Z. Q. Wang, X. Yan, M. W. Chen, J. L. Bao, G. S. Wu, Z. M. Ge, D. M. Zhou, Y. T. Wang and R. T. Li, IC-4, a new irreversible EGFR inhibitor, exhibits prominent anti-tumor and anti-angiogenesis activities, Cancer Lett.340 (2013) 88–96; https://doi.org/10.1016/j.canlet.2013.07.00510.1016/j.canlet.2013.07.00523856030Search in Google Scholar

8. L. V. Sequsit, J. C. Soria, J. W. Goldman, H. A. Wakelee, S. M. Gadgeel, A. Varga, V. Papadimitrakopoulou, B. J. Solomon, G. R. Oxnard, R. Dziadziuszko, D. L. Aisner, R. C. Doebele, C. Galasso, E. B. Garon, R. S. Heist, J. Logan, J. W. Neal, M. A. Mendenhall, S. Nichols, Z. Piotrowska, A. J. Wozniak, M. Raponi, C. A. Karlovich, S. Jaw-Tsai, J. Isaacson, D. Despain, S. L. Matheny, L. Rolfe, A. R. Allen and D. R. Camidge, Rociletinib in EGFR-mutated non-small-cell lung cancer, New Engl. J. Med.372 (2015) 1700–1709; https://doi.org/10.1056/NEJMoa141365410.1056/NEJMoa141365425923550Search in Google Scholar

9. S. L. Greig, Osimertinib: First global approval, Drugs76 (2016) 263–273; https://doi.org/10.1007/s40265-015-0533-410.1007/s40265-015-0533-426729184Search in Google Scholar

10. K. S. Thress, C. P. Paweletz, E. Felip, B. C. Cho, D. Stetson, B. Dougherty, Z. W. Lai, A. Markovets, A. Vivancos, Y. N. Kuang, D. Ercan, S. E. Matthews, M. Cantarini, J. C. Barrett, P. A. Jänne and G. R. Oxnard, Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M, Nat. Med.21 (2015) 560–562; https://doi.org/10.1038/nm.385410.1038/nm.3854477118225939061Search in Google Scholar

11. X. Zhang, F. Xu, L. Tong, T. Zhang, H. Xie, X. Lu, X. Ren and K. Ding, Design and synthesis of selective degraders of EGFRL858R/T790M mutant, Eur. J. Med. Chem.192 (2020) Article ID 112199; https://doi.org/10.1016/j.ejmech.2020.11219910.1016/j.ejmech.2020.11219932171162Search in Google Scholar

12. Y. Y. Xu, Y. Cao, H. Ma, H. Q. Li and G. Z. Ao, Design, synthesis and molecular docking of a, b-unsaturated cyclohexanone analogous of curcumin as potent EGFR inhibitors with antiproliferative activity, Bioorg. Med. Chem.21 (2013) 388–394; https://doi.org/10.1016/j.bmc.2012.11.03110.1016/j.bmc.2012.11.03123245570Search in Google Scholar

13. V. Nelson, J. Ziehr, M. Agulnik and M. Johnson, Afatinib: emerging next-generation tyrosine kinase inhibitor for NSCLC, Onco Target. Ther.6 (2013) 135–143; https://doi.org/10.2147/OTT.S2316510.2147/OTT.S23165359403723493883Search in Google Scholar

14. B. R. Kang, A. L. Shan, Y. P. Li, J. Xu, S. M. Lu and S. Q. Zhang, Discovery of 2-aryl-8-hydroxy (or methoxy)-isoquinolin-1(2H)-ones as novel EGFR inhibitor by scaffold hopping, Bioorg. Med. Chem.21 (2013) 6956–6964; https://doi.org/10.1016/j.bmc.2013.09.02710.1016/j.bmc.2013.09.02724094432Search in Google Scholar

15. M. R. V. Finlay, M. Anderton, S. Ashton, P. Ballard, P. A. Bethel, M. R. Box, R. H. Bradbury, S. J. Brown, S. Butterworth, A. Campbell, C. Chorley, N. D. Colclough, A. E. Cross, G. S. Currie, M. Grist, L. Hassall, G. B. Hill, D. James, P. Kemmitt, T. Klinowska, G. Lamont, S. G. Lamont, N. Martin, H. L. McFarland, M. J. Mellor, J. P. Orme, D. Perkins, P. Perkins, G. Richmond, P. Smith, R. A. Ward, W. J. Waring, D. Whittaker, S. Wells and G. L. Wrigley, Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor, J. Med. Chem.57 (2014) 8249–8267; https://doi.org/10.1021/jm500973a10.1021/jm500973a25271963Search in Google Scholar

16. Y. M. Zhang, M. D. Tortorella, J. X. Liao, X. C. Qin, T. T. Chen, J. F. Luo, J. T. Guan, J. J. Talley and Z. C. Tu, Synthesis and evaluation of novel Erlotinib–NSAID conjugates as more comprehensive anticancer agents, ACS Med. Chem. Lett.6 (2015) 1086–1090; https://doi.org/10.1021/acsmedchemlett.5b0028610.1021/acsmedchemlett.5b00286460106126487917Search in Google Scholar

17. K. M. Amin, F. F. Barsoum, F. M. Awadallah and N. E. Mohamed, Identification of new potent phthalazine derivatives with VEGFR-2 and EGFR kinase inhibitory activity, Eur. J. Med. Chem.123 (2016) 191–201; https://doi.org/10.1016/j.ejmech.2016.07.04910.1016/j.ejmech.2016.07.04927484508Search in Google Scholar

18. H. Zhang, J. Wang, Y. Shen, H. Y. Wang, W. M. Duan, H. Y. Zhao, Y. Y. Hei, M. H. Xin, Y. X. Cao and S. Q. Zhang, Discovery of 2,4,6-trisubstituted pyrido[3,4-d]pyrimidine derivatives as new EGFRTKIs, Eur. J. Med. Chem.148 (2018) 221–237; https://doi.org/10.1016/j.ejmech.2018.02.05110.1016/j.ejmech.2018.02.05129466773Search in Google Scholar

19. S. J. Zuo, S. Zhang, S. Mao, X. X. Xie, X. Xiao, M. H. Xin, W. Xuan, Y. Y. He, Y. X. Cao and S. Q. Zhang, Combination of 4-anilinoquinazoline, arylurea and tertiary amine moiety to discover novel anticancer agents, Bioorg. Med. Chem.24 (2016) 179–190; https://doi.org/10.1016/j.bmc.2015.12.00110.1016/j.bmc.2015.12.00126706113Search in Google Scholar

20. E. R. Lepper, S. M. Swain, A. R. Tan, W. D. Figg and A. Sparreboom, Liquid chromatographic determination of Erlotinib (OSI-774), an epidermal growth factor receptor tyrosine kinase inhibitor, J. Chromatogr. B796 (2003) 181–188; https://doi.org/10.1016/j.jchromb.2003.08.01510.1016/j.jchromb.2003.08.01514552829Search in Google Scholar

21. A. R. Masters, C. J. Sweeney and D. R. Jones, The quantification of Erlotinib (OSI-774) and OSI-420 in human plasma by liquid chromatography-tandem mass spectrometry, J. Chromatogr. B848 (2007) 379–383; https://doi.org/10.1016/j.jchromb.2006.10.04610.1016/j.jchromb.2006.10.04617101305Search in Google Scholar

22. L. Z. Wang, M. Y. Lim, T. M. Chin, W. L. Thuya, P. L. Nye, A. Wong, S. Y. Chan, B. C. Goh and P. C. Ho, Rapid determination of gefitinib and its main metabolite, O-desmethyl gefitinib in human plasma using liquid chromatography–tandem mass spectrometry, J. Chromatogr. B879 (2011) 2155–2161; https://doi.org/10.1016/j.jchromb.2011.05.05610.1016/j.jchromb.2011.05.05621703945Search in Google Scholar

23. M. Zhao, C. Hartke, A. Jimeno, J. Li, P. He, Y. Zabelina, M. Hidalgo and S. D. Baker, Specific method for determination of gefitinib in human plasma, mouse plasma and tissues using high performance liquid chromatography coupled to tandem mass spectrometry, J. Chromatogr. B819 (2005) 73–80; https://doi.org/10.1016/j.jchromb.2005.01.02710.1016/j.jchromb.2005.01.02715797523Search in Google Scholar

24. U.S. Food and Drug Administration, Bioanalytical Method Validation Guidance for Industry, US Department of Health and Human Services, FDA, Center for Drug Evaluation and Research (CDER), Silver Spring (MD) USA, 2018; https://www.fda.gov/media/70858/download; last access date June 1, 2020.Search in Google Scholar

25. Y. Zhang, M. R. Huo, J. P. Zhou, S. F. Xie and P. K. Solver, An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel, Comput. Meth. Prog. Bio.99 (2010) 306–314; https://doi.org/10.1016/j.cmpb.2010.01.00710.1016/j.cmpb.2010.01.00720176408Search in Google Scholar

26. B. Ma, Q. Zhang, G. J. Wang, Z. M. Wu, J. P. Shaw, Y. Y. Hu, Y. B. Wang, Y. T. Zheng, Z. D. Yang and H. J. Ying, Synthesis and pharmacokinetics of strontium fructose 1,6-diphosphate (Sr-FDP) as a potential antiosteoporosis agent in intact and ovariectomized rats, J. Inorg. Biochem.105 (2011) 563–568; https://doi.org/10.1016/j.jinorgbio.2011.01.00110.1016/j.jinorgbio.2011.01.00121345324Search in Google Scholar

27. W. Jiang, J. J. Yang, L. Cao, X. Xiao, X. L. Shi and Y. X. Cao, Modifications of the method for calculating absolute drug bioavailability, J. Pharm. Pharm. Sci.19 (2016) 181–187; https://doi.org/10.18433/J3RG7810.18433/J3RG7827518168Search in Google Scholar

28. N. R. Srinivas, Double or multiple/secondary peaks in pharmacokinetics: considerations and challenges from a bio-analytical perspective, Biomed. Chromatogr.26 (2012) 407–408; https://doi.org/10.1002/bmc.268010.1002/bmc.268022213389Search in Google Scholar

29. J. B. Johnston, S. Navaratnam, M. W. Pitz, J. M. Maniate, E. Wiechec, H. Baust, J. Gingerich, G. P. Skliris, L. C. Murphy and M. Los, Targeting the EGFR pathway for cancer therapy, Curr. Med. Chem.13 (2006) 3483–3492; https://doi.org/10.2174/09298670677902617410.2174/09298670677902617417168718Search in Google Scholar

30. D. Mckillop, E. A. Partridge, M. Hutchison, S. A. Rhead, A. C. Parry, J. Bardsley, H. M. Woodman and H. C. Swaisland, Pharmacokinetics of gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, in rat and dog, Xenobiotica34 (2004) 901–915; https://doi.org/10.1080/0049825040000918910.1080/0049825040000918915764410Search in Google Scholar

eISSN:
1846-9558
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Pharmazie, andere