1. bookVolumen 70 (2020): Heft 3 (September 2020)
28 Feb 2007
4 Hefte pro Jahr
Uneingeschränkter Zugang

Synthesis, in vitro safety and antioxidant activity of new pyrrole hydrazones

Online veröffentlicht: 17 Feb 2020
Volumen & Heft: Volumen 70 (2020) - Heft 3 (September 2020)
Seitenbereich: 303 - 324
Akzeptiert: 12 Sep 2019
28 Feb 2007
4 Hefte pro Jahr

1. G. Lavanya, V. Padmavathi and A. Padmaja, Synthesis and antioxidant activity of 1,4-[bis(3-arylmethanesulfonyl pyrrolyl and pyrazolyl)]benzenes, J. Braz. Chem. Soc. 25 (2014) 1200–1207; https://doi.org/10.5935/0103-5053.2014009710.5935/0103-5053.20140097Search in Google Scholar

2. S. Durgamma, A. Muralikrishna, V. Padmavathi and A. Padmaja, Synthesis and antioxidant activity of amido-linked benzoxazolyl/benzothiazolyl/benzimidazolyl-pyrroles and pyrazoles, Med. Chem. Res.23 (2014) 2916–2929; https://doi.org/10.1007/s00044-013-0884-x10.1007/s00044-013-0884-xSearch in Google Scholar

3. S. K. Sridhar, M. Saravanan and A. Ramesh, Synthesis and antibacterial screening of hydrazones, Schiff and Mannich bases of isatin derivatives, Eur. J. Med. Chem.36 (2001) 615–625; https://doi.org/10.1016/S0223-5234(01)01255-710.1016/S0223-5234(01)01255-7Search in Google Scholar

4. S. I. Alqasoumi, M. M. Ghorab, Z. H. Ismail, S. M. Abdel-Gawad, M. S. El-Gaby and H. M. Aly, Novel antitumor acetamide, pyrrole, pyrrolopyrimidine, thiocyanate, hydrazone, pyrazole, isothiocyanate and thiophene derivatives containing a biologically active pyrazole moiety, Arzneimittelforschung59 (2009) 666–671; https://doi.org/10.1055/s-0031-129645710.1055/s-0031-129645720108654Search in Google Scholar

5. Y. Xia, C. Fan, B. X. Zhao, J. Zhao, D. S. Shin and J. Y. Miao, Synthesis and structure-activity relationships of novel 1-arylmethyl-3-aryl-1H-pyrazole-5-carbohydrazide hydrazone derivatives as potential agents against A549 lung cancer cells, Eur. J. Med. Chem.43 (2008) 2347–2353; https://doi.org/10.1016/j.ejmech.2008.01.02110.1016/j.ejmech.2008.01.02118313806Search in Google Scholar

6. R. M. Mohareb, H. D. Fleita and O. K. Sakka, Novel synthesis of hydrazide-hydrazone derivatives and their utilization in the synthesis of coumarin, pyridine, thiazole and thiophene derivatives with antitumor activity, Molecules16 (2010) 16–27; https://doi.org/10.3390/molecules1601001610.3390/molecules16010016625941921187814Search in Google Scholar

7. A. A. El-Tombary and S. A. M. El-Hawash, Synthesis, antioxidant, anticancer and antiviral activities of novel quinoxalinehydrazone derivatives and their acyclic C-nucleosides, Med. Chem. 10 (2014) 521–532; https://doi.org/10.2174/1573406411309666006910.2174/1573406411309666006924151878Search in Google Scholar

8. M. O. Puskullu, H. Shirinzadeh, M. Nenni, H. Gurer-Orhan and S. Suzen, Synthesis and evaluation of antioxidant activity of new quinoline-2-carbaldehyde hydrazone derivatives: bioisosteric melatonin analogues, J. Enzyme Inhib. Med. Chem.31 (2016) 121–125; https://doi.org/10.3109/14756366.2015.100501210.3109/14756366.2015.100501225942363Search in Google Scholar

9. H. S. Kareem, A. Ariffin, N. Nordin, T. Heidelberg, A. Abdul-Aziz, K. W. Kong and W. Yehye, Correlation of antioxidant activities with theoretical studies for new hydrazone compounds bearing a 3,4,5-trimethoxy benzyl moiety, Eur. J. Med. Chem.103 (2015) 497–505; https://doi.org/10.1016/j.ejmech.2015.09.01610.1016/j.ejmech.2015.09.01626402727Search in Google Scholar

10. M. Georgieva, D. Tzankova, S. Vladimirova and A. Bijev, Evaluation of a group of pyrrole derivatives as tuberculostatic agents, CBU Int. Conf. Innov. Sci. Ed.5 (2017) 1083–1091; https://doi.org/10.12955/cbup.v5.107510.12955/cbup.v5.1075Search in Google Scholar

11. A. Bijev and M. Georgieva, Pyrrole-based hydrazones synthesized and evaluated in vitro as potential tuberculostatics, Lett. Drug Des. Discov.7 (2010) 430–437; https://doi.org/10.2174/15701800978910826810.2174/157018009789108268Search in Google Scholar

12. A. Kajal, S. Bala, N. Sharma, S. Kamboj and V. Saini, Therapeutic potential of hydrazones as anti-inflammatory agents, Int. J. Med. Chem.11 (2014) 1–11; https://doi.org/10.1155/2014/76103010.1155/2014/761030Search in Google Scholar

13. K. N. de Oliveira, P. Costa, J. R. Santin, L. Mazzambani, C. Bürger, C. Mora, R. J. Nunes and M. M. de Souza, Synthesis and antidepressant-like activity evaluation of sulphonamides and sulphonylhydrazones, Bioorg. Med. Chem.19 (2011) 4295–4306; https://doi.org/10.1016/j.bmc.2011.05.05610.1016/j.bmc.2011.05.056Search in Google Scholar

14. C. M. Leal, S. L. Pereira, A. E. Kummerle, D. M. Leal, R. Tesch, C. M. de Sant’Anna, C. A. Fraga, E. J. Barreiro, R. T. Sudo and G. Zapata-Sudo, Antihypertensive profile of 2-thienyl-3,4-methylene dioxy benzoylhydrazone is mediated by activation of the A2A adenosine receptor, Eur. J. Med. Chem.55 (2012) 49–57; https://doi.org/10.1016/j.ejmech.2012.06.05610.1016/j.ejmech.2012.06.056Search in Google Scholar

15. L. Yurttaş, Y. Özkay, Z. A. Kaplancıklı, Y. Tunalı and H. Karaca, Synthesis and antimicrobial activity of some new hydrazone-bridged thiazole-pyrrole derivatives, J. Enzyme Inhib. Med. Chem.28 (2013) 830–835; https://doi.org/10.3109/14756366.2012.68804310.3109/14756366.2012.688043Search in Google Scholar

16. O. O. Ajani, C. A. Obafemi, O. C. Nwinyi and D. A. Akinpelu, Microwave assisted synthesis and antimicrobial activity of 2-quinoxalinone-3-hydrazone derivatives, Bioorg. Med. Chem.18 (2010) 214–221; https://doi.org/10.1016/j.bmc.2009.10.06410.1016/j.bmc.2009.10.064Search in Google Scholar

17. R. J. Vaigunda, D. Sriram, S. K. Patel, I. V. Reddy, N. Bharathwajan, J. Stables and P. Yogeeswari, Design and synthesis of anticonvulsants from a combined phthalimide-GABA-anilide and hydra-zone pharmacophore, Eur. J. Med. Chem.42 (2007) 146–151; https://doi.org/10.1016/j.ejmech.2006.08.01010.1016/j.ejmech.2006.08.010Search in Google Scholar

18. J. R. Dimmock, S. C. Vashishtha and J. P. Stables, Anticonvulsant properties of various acetylhydra-zones, oxamoylhydrazones and semicarbazones derived from aromatic and unsaturated carbonyl compounds, Eur. J. Med. Chem.35 (2000) 241–248; https://doi.org/10.1016/S0223-5234(00)00123-910.1016/S0223-5234(00)00123-9Search in Google Scholar

19. B. G. Giménez, M. S. Santos, M. Ferrarini and J. P. S. Fernandes, Evaluation of blockbuster drugs under the Rule-of-five, Pharmazie65 (2010) 148–152; https://doi.org/10.1691/ph.2010.9733Search in Google Scholar

20. C. A. Lipinski, Lead- and drug-like compounds: the rule-of-five revolution, Drug Discov. Today Technol.1 (2004) 337–341; https://doi.org/10.1016/j.ddtec.2004.11.00710.1016/j.ddtec.2004.11.00724981612Search in Google Scholar

21. T. P. Kenakin, Pharmacology in Drug Discovery and Development, 2nd ed., Elsevier, Amsterdam 2017, pp. 157–191.10.1016/B978-0-12-803752-2.00007-7Search in Google Scholar

22. J. F. Varghese, R. Patel and U. C. S. Yadav, Novel insights in the metabolic syndrome-induced oxidative stress and inflammation-mediated atherosclerosis, Curr. Cardiol. Rev.14 (2018) 4–14; https://doi.org/10.2174/1573403X1366617100911225010.2174/1573403X13666171009112250587226028990536Search in Google Scholar

23. H. Yaribeygi, Y. Panahi, B. Javadi and A. Sahebkar, The underlying role of oxidative stress in neurodegeneration: A mechanistic review, CNS Neurol. Dis.-Drug Targets17 (2018) 207–215; https://doi.org/10.2174/187152731766618042512255710.2174/187152731766618042512255729692267Search in Google Scholar

24. L. A. Pham-Huy, H. He and C. Pham-Huy, Free radicals, antioxidants in disease and health, Int. J. Biomed. Sci.4 (2008) 89–96.Search in Google Scholar

25. M. Chand, Rajeshwari, A. Hiremathad, M. Singh, M. A. Santos and R. S. Keri, A review on antioxidant potential of bioactive heterocycle benzofuran: Natural and synthetic derivatives, Pharmacol. Rep.69 (2017) 281–295; https://doi.org/10.1016/j.pharep.2016.11.00710.1016/j.pharep.2016.11.00728171830Search in Google Scholar

26. M. Miceli, E. Roma, P. Rosa, M. Feroci, M. A. Loreto, D. Tofani and T. Gasperi, Synthesis of benzofuran-2-one derivatives and evaluation of their antioxidant capacity by comparing DPPH assay and cyclic voltammetry, Molecules23 (2018) 710–726; https://doi.org/10.3390/molecules2304071010.3390/molecules23040710601762029561784Search in Google Scholar

27. A. A. Shanty, J. E. Philip, E. J. Sneha, M. R. P. Kurup, S. Balachandran and P. V. Mohanan, Synthesis, characterization and biological studies of Schiff bases derived from heterocyclic moiety, Bioorg. Chem.70 (2017) 67–73; https://doi.org/10.1016/j.bioorg.2016.11.00910.1016/j.bioorg.2016.11.00927894775Search in Google Scholar

28. A. A. Shanty and P. V. Mohanan, Heterocyclic Schiff bases as non toxic antioxidants: Solvent effect, structure activity relationship and mechanism of action, Spectrochim. Acta A192 (2018) 181–187; https://doi.org/10.1016/j.saa.2017.11.01910.1016/j.saa.2017.11.01929136583Search in Google Scholar

29. K. M. Khan, Z. Shah, V. U. Ahmad, M. Khan, M. Taha, F. Rahim, S. Ali, N. Ambreen, S. Perveen, M. I. Choudhary and W. Voelter, 2,4,6-Trichlorophenylhydrazine Schiff bases as DPPH radical and super oxide anion scavengers, Med. Chem.8 (2012) 452–461; https://doi.org/10.2174/157340641120803045210.2174/157340641120803045222530900Search in Google Scholar

30. N. Belkheiri, B. Bouguerne, F. Bedos-Belval, H. Duran, C. Bernis, R. Salvayre, A. Nègre-Salvayre and M. Baltas, Synthesis and antioxidant activity evaluation of a syringic hydrazones family, Eur. J. Med. Chem.45 (2010) 3019–3026; https://doi.org/10.1016/j.ejmech.2010.03.03110.1016/j.ejmech.2010.03.03120403645Search in Google Scholar

31. A. Guillouzo, Liver cell models in in vitro toxicology, Environ. Health Perspect.106 (Suppl. 2) (1998) 511–532; https://doi.org/10.1289/ehp.9810651110.1289/ehp.9810651115333859599700Search in Google Scholar

32. P. Ertl, B. Rohde and P. Selzer, Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties, J. Med. Chem.43 (2000) 3714–3717; https://doi.org/10.1021/jm000942e10.1021/jm000942e11020286Search in Google Scholar

33. D. F. Veber, S. R. Johnson, H. Y. Cheng, B. R. Smith, K. W. Ward and K. D. Kopple, Molecular properties that influence the oral bioavailability of drug candidates, J. Med. Chem.45 (2002) 2615–2623; https://doi.org/10.1021/jm020017n10.1021/jm020017nSearch in Google Scholar

34. А. Bijev, Synthesis and preliminary screening of carbohydrazides and hydrazones of pyrrole derivatives as potential tuberculostatics, Arzneimittelforschung56 (2006) 96–103; https://doi.org/10.1055/s-0031-129670810.1055/s-0031-1296708Search in Google Scholar

35. B. C. Evans, C. E. Nelson, S. S. Yu, K. R. Beavers, A. J. Kim, H. Li, H. M. Nelson, T. D. Giorgio and C. L. Duvall, Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs, J. Vis. Exp.73 (2013) e50166; https://doi.org/10.3791/5016610.3791/50166Search in Google Scholar

36. W. Brand-Williams, M. E. Cuvelier and C. Berset, Use of a free radical method to evaluate antioxidant activity, LWT-Food Sci. Technol.28 (1995) 25–30; https://doi.org/10.1016/S0023-6438(95)80008-510.1016/S0023-6438(95)80008-5Search in Google Scholar

37. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med.26 (1999) 1231–1237; https://doi.org/10.1016/S0891-5849(98)00315-310.1016/S0891-5849(98)00315-3Search in Google Scholar

38. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193 (1951) 265–275.10.1016/S0021-9258(19)52451-6Search in Google Scholar

39. D. Mansuy, A. Sassi, P. M. Dansette and M. Plat, A new potent inhibitor of lipid peroxidation in vitro and in vivo, the hepatoprotective drug anisyldithiolthione, Biochem. Biophys. Res. Commun. 135 (1986) 1015–1021; https://doi.org/10.1016/0006-291X(86)91029-610.1016/0006-291X(86)91029-6Search in Google Scholar

40. C. Deby and R. Goutier, New perspectives on the biochemistry of superoxide anion and the efficiency of superoxide dismutases, Biochem. Pharmacol. 39 (1990) 399–405; https://doi.org/10.1016/0006-2952(90)90043-K10.1016/0006-2952(90)90043-KSearch in Google Scholar

41. H. Gao and X. Gao, Recent Progress in Blood-brain Barrier Transportation Research, in Brain Targeted Drug Delivery SystemA Focus on Nanotechnology and Nanoparticulates, 1sted. Elsevier, Amsterdam 2019, pp. 469–481.Search in Google Scholar

42. Y. H. Zhao, M. H. Abraham, J. Lee, A. Hersey, C. N. Luscombe, G. Beck, B. Sherborne and I. Cooper, Rate-limited steps of human oral absorption and QSAR studies, Pharm. Res.19 (2002) 1446–1457.10.1023/A:1020444330011Search in Google Scholar

43. D. Schuster, C. Laggner and T. Langer, Why drugs fail – a study on side effects in new chemical entities, Curr. Pharm. Des. 11 (2005) 3545–3559; https://doi.org/10.2174/13816120577441451010.2174/13816120577441451016248807Search in Google Scholar

44. W. C. Maddrey, Drug-induced hepatotoxicity, J. Clin. Gastroenterol. 39 (2005) S83–S89; https://doi.org/10.1097/01.mcg.0000155548.91524.6e10.1097/01.mcg.0000155548.91524.6eSearch in Google Scholar

45. J. Hou, W. Zhao, Z. N. Huang, S. M. Yang, L. J. Wang, Y. Jiang, Z. S. Zhou, M. Y. Zheng, J. L. Jiang, S. H. Li and F. N. Li, Evaluation of novel N-(piperidine-4-yl)benzamide derivatives as potential cell cycle inhibitors in HepG2 cells, Chem. Biol. Drug Des.86 (2015) 223–231; https://doi.org/10.1111/cbdd.1248410.1111/cbdd.12484Search in Google Scholar

46. P. Martins, J. Jesus, S. Santos, L. R. Raposo, C. Roma-Rodrigues, P. V. Baptista and A. R. Fernandes, Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s tool box, Molecules20 (2015) 16852–16891; https://doi.org/10.3390/molecules20091685210.3390/molecules200916852Search in Google Scholar

47. S. Knasmüller, W. Parzefall, R. Sanyal, S. Ecker, C. Schwab, M. Uhl, V. Mersch-Sundermann, G. Williamson, G. Hietsch, T. Langer, F. Darroudi and A. T. Natarajan, Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens, Mutat. Res./Fund. Mol. Mech. Mutagen.402 (1998) 185–202; https://doi.org/10.1016/S0027-5107(97)00297-210.1016/S0027-5107(97)00297-2Search in Google Scholar

48. V. Mersch-Sundermann, S. Knasmüller, X. J. Wu, F. Darroudi and F. Kassie, Use of a human-derived liver cell line for the detection of cytoprotective, antigenotoxic and cogenotoxic agents, Toxicology198 (2004) 329–340; https://doi.org/10.1016/j.tox.2004.02.00910.1016/j.tox.2004.02.009Search in Google Scholar

49. Y. Sıcak, E. E. Oruç-Emre, M. Öztürk, T. Taşkın-Tok and A. Karaküçük-Iyidoğan, Novel fluorine-containing chiral hydrazide-hydrazones: Design, synthesis, structural elucidation, antioxidant and anticholinesterase activity, and in silico studies, Chirality (2019) https://doi.org/10.1002/chir.23102; ahead of print.Search in Google Scholar

50. D. X. Tan, L. D. Chen, B. Poeggeler, L. C. Manchester and R. J. Reiter, Melatonin: a potent, endogenous hydroxyl radical scavenger, Endocr. J.1 (1993) 57–60.Search in Google Scholar

51. R. Reiter, L. Tang, J. J. Garcia and A. Munoz-Hoyos, Pharmacological actions of melatonin in oxygen radical pathophysiology, Life Sci.60 (1997) 2255–2271; https://doi.org/10.1016/S0024-3205(97)00030-110.1016/S0024-3205(97)00030-1Search in Google Scholar

52. R. Hardeland, Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance, Endocrine27 (2005) 119–130; https://doi.org/10.1385/ENDO:27:2:11910.1385/ENDO:27:2:119Search in Google Scholar

53. L. Deferme, J. J. Briedé, S. M. H. Claessen, D. G. J. Jennen, R. Cavill and J. C. S. Kleinjans, Time series analysis of oxidative stress response patterns in HepG2: a toxicogenomics approach, Toxicology306 (2013) 24–34; https://doi.org/10.1016/j.tox.2013.02.00110.1016/j.tox.2013.02.001Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo