Uneingeschränkter Zugang

Exploring the potential effect and mechanisms of protocatechuic acid on human hair follicle melanocytes


Zitieren

1. X. T. Truong, S. H. Park and Y. G. Lee, Protocatechuic acid from pear inhibits melanogenesis in melanoma cells, Int. J. Mol. Sci.18 (2017) 1–10; https://doi.org/10.3390/ijms1808180910.3390/ijms18081809557819628825660Search in Google Scholar

2. K. Krzysztoforska, D. Mirowska-Guzel and E. Widy-Tyszkiewicz, Pharmacological effects of protocatechuic acid and its therapeutic potential in neurodegenerative diseases: review on the basis of in vitro and in vivo studies in rodents and humans, Nutr. Neurosci.22 (2017) 72–82; https://doi.org/10.1080/1028415X.2017.135454310.1080/1028415X.2017.135454328745142Search in Google Scholar

3. R. Hornedo-Ortega, M. A. Álvarez-Fernández, A. B. Cerezo, T. Richard, A. M. Troncoso and M. C. García Parrilla, Protocatechuic acid: inhibition of fibril formation, destabilization of pre-formed fibrils of amyloid-β and α-synuclein, and neuroprotection, J. Agric. Food Chem.64 (2016) 7722–7732; https://doi.org/10.1021/acs.jafc.6b0321710.1021/acs.jafc.6b0321727686873Search in Google Scholar

4. R. Arslan, S. Aydin and D. Nemutlu Samur, The possible mechanisms of protocatechuic acid-induced central analgesia, Saudi Pharm. J.26 (2018) 541–545; https://doi.org/10.1016/j.jsps.2018.02.00110.1016/j.jsps.2018.02.001596264329844727Search in Google Scholar

5. F. V. Filipp, S. Birlea and M. W. Bosenberg, Frontiers in pigment cell and melanoma research, Pigment Cell Melanoma Res.31 (2018) 728–735; https://doi.org/10.1111/pcmr.1272810.1111/pcmr.12728670183730281213Search in Google Scholar

6. P. Janiani, P. R. Bhat and V. A. Trasad, Evaluation of the intensity of gingival melanin pigmentation at different age groups in the Indian population: An observational study, J. Indian. Soc. Pedod. Prev. Dent.36 (2018) 329–333; https://doi.org/10.4103/JISPPD.JISPPD_192_1710.4103/JISPPD.JISPPD_192_1730324920Search in Google Scholar

7. W. C. Liao, Y. T. Huang and L. P. Lu, Antioxidant ability and stability studies of 3-O-ethyl ascorbic acid a cosmetic tyrosinase inhibitor, J. Cosmet. Sci.69 (2018) 233–243; https://doi.org/10.1102/30311899Search in Google Scholar

8. D. J. Tobin, S. R. Colen and J. C. Bystryn, Isolation and long term culture of human hair follicle melanocytes, J. Invest. Dermatol.104 (1995) 86–89; https://doi.org/10.1111/1523-1747.ep1261357310.1111/1523-1747.ep126135737528247Search in Google Scholar

9. S. Wojcik, D. Weidinger and S. Ständer, Functional characterization of the extranasal OR2A4/7 expressed in human melanocytes, Exp. Dermatol.27 (2018) 1216–1223; https://doi.org/10.1111/exd.1376410.1111/exd.1376430091289Search in Google Scholar

10. H. Y. Kim, S. Kishor Sah and S. Choi, Inhibitory effects of extracellular superoxide dismutase on ultraviolet B-induced melanogenesis in murine skin and melanocytes, Life Sci.210 (2018) 201–208; https://doi.org/10.1016/j.lfs.2018.08.05610.1016/j.lfs.2018.08.05630145155Search in Google Scholar

11. M. Otreba, J. Rok, E. Buszman and D. Wrzesniok, Regulation of melanogenesis: the role of cAMP and MITF, Postepy Hig. Med. Dosw.66 (2012) 33–40; https://doi.org/10.1024/22371403Search in Google Scholar

12. J. Y. Lee, Y. R. Cho, J. H. Park, E. K. Ahn, W. Jeong, H. S Shin, M. S. Kim, S. H. Yang and J. S. Oh, Anti-melanogenic and anti-oxidant activities of ethanol extract of Kummerowia striata: Kummerowia striata regulate anti-melanogenic activity through down-regulation of TRP-1, TRP-2 and MITF expression, Toxicol. Rep.6 (2019) 10–17; https://doi.org/10.1016/j.toxrep.2018.11.00510.1016/j.toxrep.2018.11.005625812930510908Search in Google Scholar

13. M. Kanlayavattanakul and N. Lourith, Plants and natural products for the treatment of skin hyperpigmentation-a review, Planta Med.84 (2018) 988–1006; https://doi.org/10.1055/a-0583-041010.1055/a-0583-041029506294Search in Google Scholar

14. M. Otręba, A. Beberok and D. Wrześniok, In vitro melanogenesis inhibition by fluphenazine and prochlorperazine in normal human melanocytes lightly pigmented, DARU J. Pharm. Sci.26 (2018) 85–89; https://doi.org/10.1007/s40199-018-0206-410.1007/s40199-018-0206-4615448130159761Search in Google Scholar

15. A. Tuerxuntayi, Y. Q. Liu, A. Tulake, M. Kabas, A. Eblimit, H. A. Aisa, Kaliziri extract upregulates tyrosinase, TRP-1, TRP-2 and MITF expression in murine B16 melanoma cells, BMC Complement Altern. Med.14 (2014) 166–170; https://doi.org/10.1186/1472-6882-14-16610.1186/1472-6882-14-166409195724884952Search in Google Scholar

eISSN:
1846-9558
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Pharmazie, andere