Uneingeschränkter Zugang

Anticonvulsant valproic acid and other short-chain fatty acids as novel anticancer therapeutics: Possibilities and challenges


Zitieren

1. A. Duenas-Gonzalez, M. Candelaria, C. Perez-Plascencia, E. Perez-Cardenas, E. Cruz-Hernandez and L. A. Herrera, Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors, Cancer Treat. Rev.34 (2008) 206222; https://doi.org/10.1016/j.ctrv.2007.11.00310.1016/j.ctrv.2007.11.003Search in Google Scholar

2. T. Tomson, D. Battino and E. Perucca, Valproic acid after five decades of use in epilepsy: time to reconsider the indications of a time-honoured drug, Lancet Neurol.15 (2016) 210218; https://doi.org/10.1016/S1474-4422(15)00314-210.1016/S1474-4422(15)00314-2Search in Google Scholar

3. A. Yarmohamadi, J. Asadi, R. Gharaei, M. Mir and A. K. Khoshnazar, Valproic acid, a histone deacetylase inhibitor, enhances radiosensitivity in breast cancer cell line, J. Radiat. Cancer Res.9 (2018) 8692; https://doi.org/10.4103/jrcr.jrcr_37_1710.4103/jrcr.jrcr_37_17Search in Google Scholar

4. S. A. Brodie and J. C. Brandes, Could valproic acid be an effective anticancer agent? The evidence so far, Expert. Rev. Anticancer Ther.14 (2014) 10971100; https://doi.org/10.1586/14737140.2014.94032910.1586/14737140.2014.940329457952825017212Search in Google Scholar

5. A. Grabarska, M. Dmoszynska-Graniczka, E. Nowosadzka and A. Stepulak, Histone deacetylase inhibitors - Molecular mechanisms of actions and clinical applications, Postepy Hig. Med. Dosw.67 (2013) 722735.10.5604/17322693.106138124018438Search in Google Scholar

6. L. Sun and D. H. Coy, Anti-convulsant drug valproic acid in cancers and in combination anticancer therapeutics, Mod. Chem. Appl.2 (2014) 15; https://doi.org/10.4172/2329-6798.100011810.4172/2329-6798.1000118Search in Google Scholar

7. C. Tsai, J. S. Leslie, L. G. Franko-Tobin, M. C. Prasnal, T. Yang, L. V. Mackey, J. A. Fuselier, D. H. Coy, M. Liu, C. Yu and L. Sun, Valproic acid suppresses cervical cancer tumor progression possibly via activating Notch1 signaling and enhances receptor-targeted cancer chemotherapeutic via activating somatostatin receptor type II, Arch. Gynecol. Obstet.288 (2013) 393400; https://doi.org/10.1007/s00404-013-2762-710.1007/s00404-013-2762-723435724Search in Google Scholar

8. G. Sun, L. V. Mackey, D. H. Coy, C. Y. Yu and L. Sun, The histone deacetylase inhibitor valproic acid induces cell growth arrest in hepatocellular carcinoma cells via suppressing Notch signaling, J. Cancer6 (2015) 9961004; https://doi.org/10.7150/jca.1213510.7150/jca.12135456584926366213Search in Google Scholar

9. M. Mottamal, S. Zheng, T. L. Huang and G. Wang, Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents, Molecules20 (2015) 38983941; https://doi.org/10.3390/molecules2003389810.3390/molecules20033898437280125738536Search in Google Scholar

10. C. Mercurio, S. Minucci and P. G. Pelicci, Histone deacetylases and epigenetic therapies of hematological malignancies, Pharmacol. Res.62 (2010) 1834; https://doi.org/10.1016/j.phrs.2010.02.01010.1016/j.phrs.2010.02.01020219679Search in Google Scholar

11. L. Zhang, Y. Han, Q. Jiang, C. Wang and X. Chen, Trend of histone deacetylase inhibitors in cancer therapy: isoform selectivity or multitargeted strategy, Med. Res. Rev.35 (2015) 6384; https://doi.org/10.1002/med.2132010.1002/med.2132024782318Search in Google Scholar

12. D. Wang, Y. Jing, S. Ouyang, B. Liu, T. Zhu, H. Niu and Y. Tian, Inhibitory effect of valproic acid on bladder cancer in combination with chemotherapeutic agents in vitro and in vivo, Oncol. Lett.6 (2013) 14921498; https://doi.org/10.3892/ol.2013.156510.3892/ol.2013.1565381378824179547Search in Google Scholar

13. X. Yuan, H. Wu, H. Xu, H. Xiong, Q. Chu, S. Yu, G. S. Wu and K. Wu, Notch signaling: an emerging therapeutic target for cancer treatment, Cancer Lett.369 (2015) 2027; https://doi.org/10.1016/j.canlet.2015.07.04810.1016/j.canlet.2015.07.04826341688Search in Google Scholar

14. K. Hori, A. Sen and S. Artavanis-Tsakonas, Notch signaling at a glance, J. Cell Sci.126 (2013) 21352140; https://doi.org/10.1242/jcs.12730810.1242/jcs.127308367293423729744Search in Google Scholar

15. L. G. Franko-Tobin, L. V. Mackey and W. Huang, Notch1-mediated tumor suppression in cervical cancer with the involvement of sst signaling and its application in enhanced SSTR-targeted therapeutics, Oncologist17 (2011) 220232; https://doi.org/10.1634/theoncologist.2011-026910.1634/theoncologist.2011-0269328617122291092Search in Google Scholar

16. R. Bar-Shavit, M. Maoz, A. Kancharla, J. K. Nag, D. Agranovich, S. Grisaru-Granovsky and B. Uziely, G protein-coupled receptors in cancer, Int. J. Mol. Sci.17 (2016) 1320 (16 pages); https://doi.org/10.3390/ijms1708132010.3390/ijms17081320500071727529230Search in Google Scholar

17. S. P. H. Alexander, A. P. Davenport, E. Kelly, N. Marrion, J. A. Peters, H. E. Benson, E. Faccenda, A. J. Pawson, J. L. Sharman, C. Southan and J. A. Davies, The concise guide to PHARMACOLOGY 2015/16: G protein coupled receptors, Br. J. Pharmacol.172 (2015) 57445869; https://doi.org/10.1111.bph.13348Search in Google Scholar

18. N. Tarasenko, H. Chekroun-Setti, A. Nudelman and A. Rephaeli, Comparison of the anticancer properties of a novel valproic acid prodrug to leading histone deacetylase inhibitors, J. Cell Biochem.119 (2018) 34173428; https://doi.org/10.1002/jcb.2651210.1002/jcb.2651229135083Search in Google Scholar

19. X. Ni, L. Li and G. Pan, HDAC inhibitor-induced drug resistance involving ATP-binding cassette transporters (review), Oncol. Lett.9 (2015) 515521; https://doi.org/10.3892/ol.2014.271410.3892/ol.2014.2714430156025624882Search in Google Scholar

20. J. C. Ame, C. Spenlehauer and G. Murcia, The PARP superfamily, BioEssays26 (2004) 882893; https://doi.org/10.1002/bies.2008510.1002/bies.2008515273990Search in Google Scholar

21. M. Terranova-Barberio, M. S. Roca, A. I. Zotti, A. Leone, F. Bruzzese, C. Vitagliano, G. Scogliamiglio, D. Russo, G. D’Angelo, R. Franco, A. Budillon and E. Digennaro, Valproic acid potentiates the anti-cancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression, Oncotarget7 (2016) 77157731; https://doi.org/10.18632/oncotarget.680210.18632/oncotarget.6802488494926735339Search in Google Scholar

22. S. Jawed, B. Kim, T. Ottenhof, G. M. Brown, E. S. Werstiuk and L. P. Niles, Human melatonin MT1 receptor induction by valproic acid and its effects in combination with melatonin on MCF-7 breast cancer cell proliferation, Eur. J. Pharmacol.560 (2007) 1722; https://doi.org/10.1016/j.ejphar.2007.01.02210.1016/j.ejphar.2007.01.02217303109Search in Google Scholar

23. D. Witt, P. Burfeind, S. Hardenberg, L. Opitz, G. Salinas-Riester, F. Bremmer, S. Schweyer, P. Thelen, J. Neesen and S. Kaulfuss, Valproic acid inhibits the proliferation of cancer cells by re-expressing cyclin D2, Carcinogenesis34 (2013) 11151124; https://doi.org/10.1093/carcin/bgt01910.1093/carcin/bgt01923349020Search in Google Scholar

24. H. Fredly, B. T. Gjertsen and O. Bruserud, Histone deacetylase inhibition in the treatment of acute myeloid leukemia: the effects of valproic acid on leukemic cells, and the clinical and experimental evidence for combining valproic acid with other antileukemic agents, Clin. Epigenetics5 (2013) 12 (13 pages); https://doi.org/10.1186/1868-7083-5-1210.1186/1868-7083-5-12373388323898968Search in Google Scholar

25. J. P. Issa, G. Garcia-Manero, X. Huang, J. Cortes, F. Ravandi, E. Jabbour, G. Borthakur, M. Brandt, S. Pierce and H. Kantarjian, Results of phase 2 randomized study of low-dose decitabine with or without valproic acid in patients with myelodysplastic syndrome and acute myelogenous leukemia, Cancer121 (2015) 556561; https://doi.org/10.1002/cncr.2908510.1002/cncr.29085432000025336333Search in Google Scholar

26. G. Garcia-Manero, H. M. Kantarjian, B. Sanchez-Gonzalez, H. Yang, G. Rosner, S. Verstovsek, M. Rytting, W. G. Wierda, F. Ravandi, C. Koller, L. Xiao, S. Faderl, Z. Estrov, J. Cortes, S. O´Brien, E. Estey, C. Bueso-Ramos, J. Fiorentino, E. Jabbour and J. P. Issa, Phase 1/2 study of the combination of 5-aza-2´-deoxycytidine with valproic acid in patients with leukemia, Blood108 (2006) 32713279; https://doi.org/10.1182/blood-2006-03-00914210.1182/blood-2006-03-009142189543716882711Search in Google Scholar

27. S. Iwahashi, T. Utsunomiya, S. Imura, Y. Morine, T. Ikemoto, Y. Arakawa, Y. Saito, D. Ishikawa and M. Shimada, Effects of valproic acid in combination with S-1 on advanced pancreatobiliary tract cancers: clinical study phases I/II, Anticancer Res.34 (2014) 51875192.Search in Google Scholar

28. M. Kobayakawa and Y. Kojima, Tegafur/gimeracil/oteracil (S-1) approved for the treatment of advanced gastric cancer in adults when given in combination with cisplatin: a review comparing it with other fluoropyrimidine-based therapies, Oncol. Targets Ther.4 (2011) 193201; https://doi.org/10.2147/OTT.S1905910.2147/OTT.S19059323327822162925Search in Google Scholar

29. B. F. Chu, M. J. Karpenko, Z. Liu, J. Aimiuwu, M. A. Villalona-Calero, K. K. Chan, M. R. Grever and G. A. Otterson, Phase I study of 5-aza-2´-deoxycytidine in combination with valproic acid in non-small-cell lung cancer, Cancer Chemother. Pharmacol.71 (2013) 115121; https://doi.org/10.1007/s00280-012-1986-810.1007/s00280-012-1986-823053268Search in Google Scholar

30. K. Steliou, M. S. Boosalis, S. P. Perrine, J. Sangerman and D. V. Faller, Butyrate histone deacetylase inhibitors, Biores. Open Access1 (2012) 192198; https://doi.org/10.1089/biores.2012.022310.1089/biores.2012.0223355923523514803Search in Google Scholar

31. C. Damaskos, N. Garmpis, S. Valsami, M. Kontos, E. Spartalis, T. Kalampokas, E. Kalampokas, D. Moris, A. Daskalopoulou, S. Davakis, G. Tsourouflis, K. Kontzoglou, D. Perrea, N. Nikiteas and D. Dimitroulis, Histone deacetylase inhibitors: An attractive therapeutic strategy against breast cancer, Anticancer Res.37 (2017) 3546; https://doi.org/10.21873/anticanres.1128610.21873/anticanres.1128628011471Search in Google Scholar

32. M. S. Abaza, A. Afzal and M. Afzal, Short-chain fatty acids are antineoplastic agents, Fatty Acids (2017) 5770; https://doi.org/10.5772/intechopen.6844110.5772/intechopen.68441Search in Google Scholar

33. G. M. Matthews, G. S. Howarth and R. N. Butler, Short-chain fatty acids induce apoptosis in colon cancer cells associated with changes to intracellular redox state and glucose metabolism, Chemotherapy58 (2012) 102109; https://doi.org/10.1159/00033567210.1159/00033567222488147Search in Google Scholar

34. J. H. Cho, M. Dimri and G. P. Dimri, MicroRNA-31 is a transcriptional target of histone deacetylase inhibitors and a regulator of cellular senescence, J. Biol. Chem.290 (2015) 1055510567; https://doi.org/10.1074/jbc.M114.62436110.1074/jbc.M114.624361440036225737447Search in Google Scholar

35. P. Vishwakarma, A. Kumar, M. Sharma, M. Garg and K. Saxena, Histone deacetylase inhibitors: pharmacotherapeutic implications as epigenetic modifier, Int. J. Clin. Pharmacol.3 (2014) 2736; https://doi.org/10.5455/2319-2003.ijbcp2014023610.5455/2319-2003.ijbcp20140236Search in Google Scholar

36. M. S. Al-Keilani, K. H. Alzoubi and S. A. Jaradat, The effect of combined treatment with sodium phenylbutyrate and cisplatin, erlotinib, or gefitinib on resistant NSCLC cells, Clin. Pharmacol.10 (2018) 135140; https://doi.org/10.2147/CPAA.S17407410.2147/CPAA.S174074618690030349406Search in Google Scholar

37. A. R. Z. Almotairy, V. Gandin, L. Morrison, C. Marzan, D. Montagner and A. Erxleban, Antitumor platinum(IV) derivatives of carboplatin and the histone deacetylase inhibitor 4-phenylbutyric acid, J. Inorg. Biochem.177 (2017) 17; https://doi.org/10.1016/j.jinorgbio.2017.09.00910.1016/j.jinorgbio.2017.09.00928918353Search in Google Scholar

38. A. Mostoufi, R. Baghgoli and M. Fereidoonnezhad, Synthesis, cytotoxicity, apoptosis and molecular docking studies of novel phenylbutyrate derivatives as potential anticancer agents, Comput. Biol. Chem.80 (2019) 128137; https://doi.org/10.1016/j.compbiochem.2019.03.008Search in Google Scholar

39. D. J. Morrison and T. Preston, Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism, Gut Microbes7 (2016) 189200; https://doi.org/10.1080/19490976.2015.11 34082Search in Google Scholar

40. R. Fellows, J. Denizot, C. Stellato, A. Cuomo, P. Jain, E. Stoyanova, S. Balázsi, Z. Hajnády, A. Liebert, J. Kazakevych, H. Blackburn, R. O. Corréa, J. L. Fachi, F. T. Sato, W. R. Ribeiro, C. M. Ferreira, H. Perée, M. Spagnuolo, R. Mattiuz, C. Matoksi, J. Guedes, J. Clark, M, Veldhoen, T. Bonaldi, M. A. R. Vinolo and P. Varga-Weisz, Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases, Nat. Commun.9 (2018) Article ID 105 (15 pages); https://doi.org/10.1038/s41467-017-02651-510.1038/s41467-017-02651-5576062429317660Search in Google Scholar

eISSN:
1846-9558
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Pharmazie, andere