Uneingeschränkter Zugang

Proton pump inhibitors enhance chemosensitivity, promote apoptosis, and suppress migration of breast cancer cells


Zitieren

1. L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent and A. Jemal, Global cancer statistics, 2012, Ca-Cancer J. Clin.65 (2015) 87–108; https://doi.org/10.3322/caac.2126210.3322/caac.21262Search in Google Scholar

2. C. A. Gabriel and S. M. Domchek, Breast cancer in young women, Breast Cancer Res. 12 (2010) 212–221; https://doi.org/10.1186/bcr264710.1186/bcr2647Search in Google Scholar

3. G. Housman, S. Byler, S. Heerboth, K. Lapinska, M. Longacre, N. Snyder and S. Sarkar, Drug resistance in cancer: an overview, Cancers6 (2014) 1769–1792; https://doi.org/10.3390/cancers603176910.3390/cancers6031769Search in Google Scholar

4. M. A. Aleskandarany, M. E. Vandenberghe, C. Marchiò, I. O. Ellis, A. Sapino and E. A. Rakha, Tumour heterogeneity of breast cancer: from morphology to personalized medicine, Pathobiology85 (2018) 23–34; https://doi.org/10.1159/00047785110.1159/000477851Search in Google Scholar

5. S. Fais, G. Venturi and B. Gatenby, Microenvironmental acidosis in carcinogenesis and metastases: new strategies in prevention and therapy, Cancer Metastasis Rev.33 (2014) 1095–1108; https://doi.org/10.1007/s10555-014-9531-310.1007/s10555-014-9531-3Search in Google Scholar

6. E. K. Rofstad, B. Mathiesen, K. Kindem and K. Galappathi, Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice, Cancer Res. 66 (2006) 6699–6707; https://doi.org/10.1158/0008-5472.can-06-098310.1158/0008-5472.CAN-06-0983Search in Google Scholar

7. S. Taylor, E. P. Spugnini, Y. G. Assaraf, T. Azzarito, C. Rauch and S. Fais, Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach, Drug Resist. Updates23 (2015) 69–78; https://doi.org/10.1016/j.drup.2015.08.00410.1016/j.drup.2015.08.004Search in Google Scholar

8. M. Bellone, A. Calcinotto, P. Filipazzi, L. Rivoltini, A. De Milito and S. Fais, The acidity of the tumor microenvironment is a mechanism of immune escape that can be overcome by proton pump inhibitors, OncoImmunology2 (2013) e22058; https://doi.org/10.4161/onci.2205810.4161/onci.22058Search in Google Scholar

9. D. A. Loeffler, P. L. Juneau and G. H. Heppner, Natural killer-cell activity under conditions reflective of tumor micro-environment, Int. J. Cancer48 (1991) 895–899; https://doi.org/10.1002/ijc.291048061710.1002/ijc.2910480617Search in Google Scholar

10. S. Fais, A. De Milito, H.You and W.Qin, Targeting vacuolar H+-ATPases as a new strategy against cancer, Cancer Res. 67 (2007) 10627–10630; https://doi.org/10.1158/0008-5472.CAN-07-180510.1158/0008-5472.CAN-07-1805Search in Google Scholar

11. C. A. Stedman and M. L. Barclay, Review article: comparison of the pharmacokinetics, acid suppression and efficacy of proton pump inhibitors, Aliment. Pharmacol. Ther.14 (2000) 963–978; https://doi.org/10.1046/j.1365-2036.2000.00788.x10.1046/j.1365-2036.2000.00788.xSearch in Google Scholar

12. K. Lindner, C. Borchardt, M. Schopp, A. Burgers, R. Hummel, C. Stock, D. J. Hussey and J. Haier, Proton pump inhibitors (PPIs) impact on tumour cell survival, metastatic potential and chemotherapy resistance, and affect expression of resistance-relevant miRNAs in esophageal cancer, Exp. Clin. Cancer Res.33 (2014) 73–85; https://doi.org/10.1186/s13046-014-0073-x10.1186/s13046-014-0073-xSearch in Google Scholar

13. J. Patlolla, Y. Zhang, Q. Li, V. Steele and C. Rao, Anti-carcinogenic properties of omeprazole against human colon cancer cells and azoxymethane-induced colonic aberrant crypt foci formation in rats, Int. J. Oncol.40 (2012) 170–175; https://doi.org/10.3892/ijo.2011.121410.3892/ijo.2011.1214Search in Google Scholar

14. A. Udelnow, A. Kreyes, S. Ellinger, K. Landfester, P. Walther, T. Klapperstueck, J. Wohlrab, D. Henne-Bruns, U. Knippschild and P. Würl, Omeprazole inhibits proliferation and modulates autophagy in pancreatic cancer cells, Plos One6 (2011) e20143; https://doi.org/10.1371/journal.pone.002014310.1371/journal.pone.0020143Search in Google Scholar

15. M. Yeo, D. K. Kim, Y. B. Kim, T. Y. Oh, J. E. Lee, S. W. Cho, H. C. Kim and K. B. Hahm, Selective induction of apoptosis with proton pump inhibitor in gastric cancer cells, Clin. Cancer Res.10 (2004) 8687–8696; https://doi.org/10.1158/1078-0432.CCR-04-106510.1158/1078-0432.CCR-04-1065Search in Google Scholar

16. U. H. Jin, S. O. Lee, C. Pfent and S. Safe, The aryl hydrocarbon receptor ligand omeprazole inhibits breast cancer cell invasion and metastasis, BMC Cancer14 (2014) 498; https://doi.org/10.1186/1471-2407-14-49810.1186/1471-2407-14-498Search in Google Scholar

17. Y. Shen, M. Chen, S. Huang and M. Zou, Pantoprazole inhibits human gastric adenocarcinoma SGC-7901 cells by downregulating the expression of pyruvate kinase M2, Oncol. Lett.11 (2016) 717–722; https://doi.org/10.3892/ol.2015.391210.3892/ol.2015.3912Search in Google Scholar

18. X. Zeng, L. Liu, M. Zheng, H. Sun, J. Xiao, L. Lu, G. Huang, P. Chen, J. Zhang, F. Zhu, H. Li and Q. Duan, Pantoprazole, an FDA-approved proton-pump inhibitor, suppresses colorectal cancer growth by targeting T-cell-originated protein kinase, Oncotarget7 (2016) 22460–22473; https://doi.org/10.18632/oncotarget.798410.18632/oncotarget.7984Search in Google Scholar

19. M. Chen, S. L. Huang, X. Q. Zhang, B. Zhang, H. Zhu, V. W. Yang and X. P. Zou, Reversal effects of pantoprazole on multidrug resistance in human gastric adenocarcinoma cells by down-regulating the V-ATPases/mTOR/HIF-1a/P-gp and MRP1 signaling pathway in vitro and in vivo, J. Cell. Biochem.113 (2012) 2474–2487; https://doi.org/10.1002/jcb.2412210.1002/jcb.24122Search in Google Scholar

20. S. K. Bardaweel, H. A. Alsalamat, S. M. Aleidi and R. M. Bashatwah, Glucose deprivation enhances the antiproliferative effects of oral hypoglycemic biguanides in different molecular sub-types of breast cancer: An in vitro study, Acta Pharm.68 (2018) 517–524; https://doi.org/10.2478/acph-2018-003110.2478/acph-2018-0031Search in Google Scholar

21. T. C. Chou, Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies, Pharmacol. Rev.58 (2006) 621–681; https://doi.org/10.1124/pr.58.3.1010.1124/pr.58.3.10Search in Google Scholar

22. S. R. Sennoune, K. Bakunts, G. M. Martínez, J. L. Chua-Tuan, Y. Kebir, M. N Attaya and R. Martínez-Zaguilán, Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity, Am. J. Physiol. Cell Physiol.286 (2004) C1443-C1452; https://doi.org/10.1152/ajpcell.00407.200310.1152/ajpcell.00407.2003Search in Google Scholar

23. J. Capecci and M. Forgac, The function of vacuolar ATPase (V-ATPase) a subunit isoforms in invasiveness of MCF10a and MCF10CA1a human breast cancer cells, J. Biol. Chem.288 (2013) 32731–32741; https://doi.org/10.1074/jbc.M113.50377110.1074/jbc.M113.503771Search in Google Scholar

24. E. Iessi, M. Logozzi, D. Mizzoni, R. Di Raimo, C. Supuran and S. Fais, Rethinking the combination of proton exchanger inhibitors in cancer therapy, Metabolites8 (2018) 2; https://doi.org/10.3390/metabo801000210.3390/metabo8010002Search in Google Scholar

25. A. De Milito, E. Iessi, M. Logozzi, F. Lozupone, M. Spada, M. L. Marino, C. Federici, M. Perdicchio, P. Matarrese, L. Lugini, A. Nilsson and S. Fais, Proton pump inhibitors induce apoptosis of human B-cell tumors through a caspase-independent mechanism involving reactive oxygen species, Cancer Res.67 (2007) 5408–5417; https://doi.org/10.1158/0008-5472.CAN-06-409510.1158/0008-5472.CAN-06-4095Search in Google Scholar

26. L. Scaringi, P. Cornacchione, E. Ayroldi, L. Corazzi, E. Capodicasa, R. Rossi and P. Marconi, Omeprazole Induces apoptosis in jurkat cells, Int. J. Immunopathol. Pharmacol.17 (2004) 331–342; https://doi.org/10.1177/03946320040170031310.1177/039463200401700313Search in Google Scholar

27. S. Zhang, Y. Wang and S. J. Li, Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion, Biochem. Biophys. Res. Commun. 448 (2014) 424–429; https://doi.org/10.1016/j.bbrc.2014.04.12710.1016/j.bbrc.2014.04.127Search in Google Scholar

28. C. Cristina, X. S. Renato, C. Susana, C. Sonia, J. O. Paulo, S. S. Maria and I. M. Paula, Doxorubicin: the good, the bad and the ugly effect, Curr. Med. Chem.16 (2009) 3267–3285; https://doi.org/10.2174/09298670978880331210.2174/092986709788803312Search in Google Scholar

29. K. J. Patel, C. Lee, Q. Tan and I. F. Tannock, Use of the proton pump inhibitor pantoprazole to modify the distribution and activity of doxorubicin: a potential strategy to improve the therapy of solid tumors, Clin. Cancer Res.19 (2013) 6766–6776; https://doi.org/10.1158/1078-0432.CCR-13-012810.1158/1078-0432.CCR-13-0128Search in Google Scholar

30. J. R. Rey, E. V. Cervino, M. L. Rentero, E. C. Crespo, A. O. Álvaro and M. Casillas, Raloxifene: mechanism of action, effects on bone tissue, and applicability in clinical traumatology practice, Open Orthop. J.3 (2009) 14–21; https://doi.org/10.2174/187432500090301001410.2174/1874325000903010014Search in Google Scholar

eISSN:
1846-9558
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Pharmazie, andere