Uneingeschränkter Zugang

Miniaturized shake-flask HPLC method for determination of distribution coefficient of drugs used in inflammatory bowel diseases


Zitieren

1. J. A. Arnott and S. L. Planey, The influence of lipophilicity in drug discovery and design, Expert Opin. Drug Discov. 7 (2012) 863–875; https://doi.org/10.1517/17460441.2012.71436310.1517/17460441.2012.71436322992175Search in Google Scholar

2. M. C. Wenlock, T. Potter, P. Barton and R. P. Austin, A method for measuring the lipophilicity of compounds in mixtures of 10, J. Biomol. Screen.16 (2011) 348–355; https://doi.org/10.1177/108705711039637210.1177/108705711039637221343602Search in Google Scholar

3. Y. Dohta, T. Yamashita, S. Horiike, T. Nakamura and T. Fukami, A system for LogD screening of 96-well plates using a water-plug aspiration/injection method combined with high-performance liquid chromatography-mass spectrometry, Anal. Chem.79 (2007) 8312–8315; https://doi.org/10.1021/ac070979810.1021/ac070979817910417Search in Google Scholar

4. T. Yamashita, I. Nishimura, T. Nakamura and T. Fukami, A system for LogD screening of new drug candidates using a water-plug injection method and automated liquid handler, J. Lab. Autom.14 (2009) 276–281; https://doi.org/10.1016/j.jala.2008.10.00110.1016/j.jala.2008.10.001Search in Google Scholar

5. Y. W. Alelyunas, L. Pelosi-Kilby, P. Turcotte, M. B. Kary and R. C. Spreen, A high throughput dried DMSO LogD lipophilicity measurement based on 96-well shake-flask and atmospheric pressure photoionization mass spectrometry detection, J. Chromatogr. A1217 (2010) 1950–1955; https://doi.org/10.1016/j.chroma.2010.01.07110.1016/j.chroma.2010.01.07120153476Search in Google Scholar

6. I. Nishimura, A. Hirano, T. Yamashita and T. Fukami, Improvement of the high-speed logD assay using an injection marker for the water plug aspiration/injection method, J. Chromatogr. A1216 (2009) 2984–2988; https://doi.org/10.1016/j.chroma.2009.02.00410.1016/j.chroma.2009.02.00419237161Search in Google Scholar

7. A. Andrés, M. Rosés, C. Ràfols, E. Bosch, S. Espinosa, V. Segarra and J. M. Huerta, Setup and validation of shake-flask procedures for the determination of partition coefficients (logD) from low drug amounts, Eur. J. Pharm. Sci.76 (2015) 181–191; https://doi.org/10.1016/j.ejps.2015.05.00810.1016/j.ejps.2015.05.00825968358Search in Google Scholar

8. M. Medić-Šarić, A. Mornar, T. Badovinac-Črnjević and I. Jasprica, Experimental and calculation procedures for molecular lipophilicity: comparative study for 3,3’-(2-metoxybenzylidene)bis[4-hydroxycoumarin], Croat. Chem. Acta77 (2004) 367–370.Search in Google Scholar

9. M. Medić-Šarić, A. Mornar and I. Jasprica, Lipophilicity study of salicylamide, Acta Pharm.54 (2004) 91–101.Search in Google Scholar

10. E. Kłosińska-Szmurło, F. A. Pluciński, M. Grudzień, K. Betjelewska-Kielak, J. Biemacka and A. P. Mazurek, Experimental and theoretical studies on the molecular properties of ciprofloxacin, norfloxacin, pefloxacin, sparfloxacin and gatifloxacin in determining bioavailability, J. Biol. Phys.40 (2014) 335–345; https://doi.org/10.1007/s10867-014-9354-z10.1007/s10867-014-9354-z411918525033818Search in Google Scholar

11. D. Dellis, C. Giaginis and A. Tsantili-Kakoulidou, Physicochemical profile of nimesulide. Exploring the interplay of lipophilicity, solubility and ionization, J. Pharm. Biomed. Anal. 44 (2007) 57–62; https://doi.org/10.1016/j.jpba.2007.01.03510.1016/j.jpba.2007.01.03517336024Search in Google Scholar

12. L. Hitzel, A. P. Watt and K. L. Locker, An increased throughput method for the determination of partition coefficients, Pharm. Res.17 (2000) 1389–1395; https://doi.org/10.1023/A:100754690587410.1023/A:1007546905874Search in Google Scholar

13. Z. Rahmani, M. Saidi, M. Yousfi and M. Dakmouche, Experimental and theoretical study on lipophilicity of novel 1,2-dithiole-3-thiones synthetic, Asian J. Chem.25 (2013) 1–5.10.14233/ajchem.2013.15061Search in Google Scholar

14. D. M. Wilson, X. Wang, E. Walsh and R. A. Rourick, High throughput logD determination using liquid chromatography-mass spectrometry, Comb. Chem. High T. Scr.4 (2001) 511–519; https://doi.org/10.2174/138620701333091310.2174/138620701333091311562255Search in Google Scholar

15. M. Dołowy and A. Pyka, Lipophilicity study of salicylic and acetylsalicylic acids using both experimental and calculations methods, J. Liq. Chromatogr. R. T.38 (2015) 485–491; https://doi.org/10.1080/10826076.2014.91352710.1080/10826076.2014.913527Search in Google Scholar

16. B. Lin and J. H. Pease, A novel method for high throughput lipophilicity determination by microscale shake flask and liquid chromatography tandem mass spectrometry, Comb. Chem. High T. Scr.16 (2013) 817–825; https://doi.org/10.2174/138620731130101000710.2174/138620731130101000724168238Search in Google Scholar

17. Y. Mrestani, C. Mrestani-Klaus, B. Bretschneider and R. H. Neubert, Improvement of lipophilicity and membrane transport of cefuroxime using in vitro models, Eur. J. Pharm. Biopharm.58 (2004) 653–657; https://doi.org/10.1016/j.ejpb.2004.04.00810.1016/j.ejpb.2004.04.00815451541Search in Google Scholar

18. T. A. Malik, Inflammatory bowel disease: Historical perspective, Epidemiology, and Risk Factors, Surg. Clin. North Am.95 (2015) 1105–1122; https://doi.org/10.1016/j.suc.2015.07.00610.1016/j.suc.2015.07.00626596917Search in Google Scholar

19. M. Fakhoury, R. Negrulj, A. Mooranian and H. Al-Salami, Inflammatory bowel disease: clinical aspects and treatments, J. Inflamm. Res.7 (2014) 113–120; https://doi.org/10.2147/JIR.S6597910.2147/JIR.S65979410602625075198Search in Google Scholar

20. S. Bangalore, G. Kamalakkannan, S. Parkar and F. H. Messerli, Fixed-Dose Combinations Improve Medication Compliance: A Meta-Analysis, Am. J. Med.120 (2007) 713–719; https://doi.org/10.1016/j.amjmed.2006.08.03310.1016/j.amjmed.2006.08.03317679131Search in Google Scholar

21. T. Loftsson, Physicochemical Properties and Pharmacokinetics, in Essential Pharmacokinetics – A Primer for Pharmaceutical Scientists (Ed. T. Loftsson), 1st ed., Academic Press, Cambridge 2015, pp. 85–104.10.1016/B978-0-12-801411-0.00003-2Search in Google Scholar

22. A. Kowalska and K. Pluta, RP TLC assay of the lipophilicity of new azathioprine analogs, J. Liq. Chromatogr. Relat. Technol. 35 (2012) 1686–1696; https://doi.org/10.1080/10826076.2011.62115810.1080/10826076.2011.621158Search in Google Scholar

23. A. Czyrski and B. Kupczyk, The determination of partition coefficient of 6-mercaptopurine derivatives by thin layer chromatography, J. Chem. (2013) 1–4; https://doi.org/10.1155/2013/41919410.1155/2013/419194Search in Google Scholar

24. M. Chrzanowska, M. Kuehn, T. Hermann and R. H. H. Neubert, Biopharmaceutical characterization of some synthetic purine drugs, Pharmazie58 (2003) 504–506.Search in Google Scholar

25. E. A. Enyedy, E. Farkas, O. Dömötör and M. A. Santos, Interaction of folic acid and some matrix metalloproteinase (MMP) inhibitor folate-γ-hydroxamate derivatives with Zn(II) and human serum albumin, J. Inorg. Biochem.105 (2011) 444–453; https://doi.org/10.1016/j.jinorgbio.2010.12.00810.1016/j.jinorgbio.2010.12.00821421131Search in Google Scholar

26. A. Mornar, M. Damić and B. Nigović, Pharmacokinetic parameters of statin drugs characterized by reversed phase high-performance liquid chromatography, Anal. Lett.44 (2011) 1009–1020; https://doi.org/10.1080/00032719.2010.51173810.1080/00032719.2010.511738Search in Google Scholar

27. N. Delchier, C. Ringling, M.-E. Cuvelier, F. Courtois, M. Rychlik and C. M. G. C. Renard, Thermal degradation of folates under varying oxygen conditions, Food Chem.165 (2014) 85–91; https://doi.org/10.1016/j.foodchem.2014.05.07610.1016/j.foodchem.2014.05.07625038652Search in Google Scholar

28. V. Somasekhar, Optimization and validation of an RP-HPLC method for the estimation of 6-mercaptopurine in bulk and pharmaceutical formulations, Braz. J. Pharm. Sci.50 (2014) 793–797; https://doi.org/10.1590/S1984-8250201400040001510.1590/S1984-82502014000400015Search in Google Scholar

29. P. Ravisankar, K. A. Rani, C. Vinella, V. L. Sri and M. V. Bharathi, Development and Validation of Rapid RP-HPLC Method for the Determination of Azathioprine in Bulk and Pharmaceutical Dosage Form, Pharm. Lett. 7 (2015) 85–95.Search in Google Scholar

30. K. Jogi, M. B. Rao and R. R. Raju, Development and validation of stability indicating RP-HPLC method for the estimation of methotrexate and folic acid in bulk and tablet dosage form, Int. J. Eng. Technol. Sci. Res.3 (2016) 45–53.Search in Google Scholar

31. International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH Harmonised Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology Q2(R1), Current Step 4 version, November 2005; https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf; access date May 5, 2019.Search in Google Scholar

32. M. Chrzanowska, J. Sobiak, M. Kuehn, E. Dorawa and T. Hermann, Partition coefficients of some purine derivatives and its application to pharmacokinetics, Pharmazie64 (2009) 804–806; https://doi.org/10.1691/ph.2009.9181Search in Google Scholar

33. X. Liu, B. Testa and A. Fahr, Lipophilicity and its relationship with passive drug permeation, Pharm. Res.28 (2011) 962–977; https://doi.org/10.1007/s11095-010-0303-710.1007/s11095-010-0303-721052797Search in Google Scholar

34. J. Fallingborg, Intraluminal pH of the human gastrointestinal tract, Dan. Med. Bull.46 (1999) 183–196.Search in Google Scholar

35. M. A. Hofsäss, J. de Souza, N. M. Silva-Barcellos, K. R. Bellavinha, B. Abrahamsson, R. Cristofoletti, D. W. Groot, A. Parr, P. Langguth, J. E. Polli, V. P. Shah, T. Tajiri, M. U. Mehta and J. B. Dressman, Biowaiver monographs for immediate-release solid oral dosage forms: Folic acid, J. Pharm. Sci.106 (2017) 3421–3430; https://doi.org/10.1016/j.xphs.2017.08.00710.1016/j.xphs.2017.08.00728842299Search in Google Scholar

eISSN:
1846-9558
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Pharmazie, andere