Uneingeschränkter Zugang

Insights into the mechanism of antiproliferative effects of primaquine-cinnamic acid conjugates on MCF-7 cells


Zitieren

1. P. Sharma, Cinnamic acid derivatives: A new chapter of various pharmacological activities, J. Chem. Pharm. Res.3 (2011) 403–423.Search in Google Scholar

2. J. D. Guzman, Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity, Molecules19 (2014) 292–349; https://doi.org/10.3390/molecules19121929210.3390/molecules191219292627180025429559Search in Google Scholar

3. R. Lone, R. Shuab and K. K. Koul, Role of cinnamate and cinnamate derivatives in pharmacology, Glob. J. Pharmacol.8 (2014) 328–335; https://doi.org/10.5829/idosi.gjp.2014.8.3.83132Search in Google Scholar

4. M. Sova, Antioxidant and antimicrobial activities of cinnamic acid derivatives, Mini Rev. Med. Chem.12 (2012) 749–767; https://doi.org/10.2174/13895571280126479210.2174/13895571280126479222512578Search in Google Scholar

5. M. K. Lee, Y. B. Park, S. S. Moon, S. H. Bok, D. J. Kim, T. Y. Ha, T. S. Jeong, K. S. Jeong and M. S. Choi, Hypocholesterolemic and antioxidant properties of 3-(4-hydroxyl)propanoic acid derivatives in high-cholesterol fed rats, Chem.-Biol. Interact.170 (2007) 9–19; https://doi.org/10.1016/j.cbi.2007.06.03710.1016/j.cbi.2007.06.03717662703Search in Google Scholar

6. J. Zhang, J. Yang, X. Chang, C. Zhang, H. Zhou and M. Liu, Ozagrel for acute ischemic stroke: a meta-analysis of data from randomized controlled trials, Neurol. Res.34 (2012) 346–353; https://doi.org/10.1179/1743132812Y.000000002210.1179/1743132812Y.000000002222643078Search in Google Scholar

7. J. Kanaani and H Ginsburg, Effects of cinnamic acid derivatives on in vitro growth of Plasmodium falciparum and on the permeability of the membrane of malaria-infected erythrocytes, Antimicrob. Agents Chemother.36 (1992) 1102–1108.10.1128/AAC.36.5.11021888431510401Search in Google Scholar

8. B. Pérez, C. Teixeira, A. S. Gomes, I. S. Albuquerque, J. Gut, P. J. Rosenthal, M. Prudêncio and P. Gomes, In vitro efficiency of 9-(N-cinnamoylbutyl)aminoacridines against blood- and liver-stage malaria parasites, Bioorg. Med. Chem. Lett.23 (2013) 610–613; https://doi.org/10.1016/j.bmcl.2012.12.03210.1016/j.bmcl.2012.12.03223290049Search in Google Scholar

9. B. C. Pérez, C. Teixeira, M. Figueiras, J. Gut, P. J. Rosenthal, J. R. B. Gomes and P. Gomes, Novel cinnamic acid/4-aminoquinoline conjugates bearing non-proteinogenic amino acids: Towards the development of potential dual action antimalarials, Eur. J. Med. Chem.54 (2012) 887–899; https://doi.org/10.1016/j.ejmech.2012.05.02210.1016/j.ejmech.2012.05.02222683112Search in Google Scholar

10. B. C. Pérez, I. Fernandes, N. Mateus, C. Teixeira and P. Gomes, Recycling antimalarial leads for cancer: Antiproliferative properties of N-cinnamoyl chloroquine analogues, Bioorg. Med. Chem. Lett.23 (2013) 6769–6772; https://doi.org/10.1016/j.bmcl.2013.10.02510.1016/j.bmcl.2013.10.02524184076Search in Google Scholar

11. K. Frenkel, H. Wei, R. Bhimani, J. Ye, J. A. Zadunaisky, M.-T. Huang, T. Ferraro, A. H. Conney and D. Grunberger, Inhibition of tumor promoter-mediated processes in mouse skin and bovine lens by caffeic acid phenethyl ester, Cancer Res.53 (1993) 1255–1261.Search in Google Scholar

12. L. Liu,W. R. Hudgins, S. Shack, M. Q. Yin and D. Samid, Cinnamic acid: a natural product with potential use in cancer intervention, Int. J. Cancer62 (1995) 345–350.Search in Google Scholar

13. S. Mishima, Y. Ono, Y. Araki, Y. Akao and Y. Nozawa, Two related cinnamic acid derivatives from Brazilian honey bee propolis, baccharin and drupanin, induce growth inhibition in allografted sarcoma S-180 in mice, Biol. Pharm. Bull.28 (2005) 1025–1030; https://doi.org/10.1248/bpb.28.102510.1248/bpb.28.102515930739Search in Google Scholar

14. Y. Qian, H.-J. Zhang, H. Zhang, C. Xu, J. Zhao and H.-L. Zhu, Synthesis, molecular modeling, and biological evaluation of cinnamic acid metronidazole ester derivatives as novel anticancer agents, Bioorg. Med. Chem.18(2010) 4991–4996; https://doi.org/10.1016/j.bmc.2010.06.00310.1016/j.bmc.2010.06.00320594859Search in Google Scholar

15. J. Dai and J. M. Russell, Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties, Molecules15 (2010) 7313–7352; https://doi.org/10.3390/molecules1510731310.3390/molecules15107313Search in Google Scholar

16. X.-H. Yang, Q. Wen, T.-T. Zhao, J. Sun, X. Li, M. Xing, X. Lu and H.-L. Zhu, Synthesis, biological evaluation, and molecular docking studies of cinnamic acyl 1,3,4-thiadiazole amide derivatives as novel antitubulin agents, Bioorg. Med. Chem.20 (2012) 1181–1187; https://doi.org/10.1016/j.bmc.2011.12.05710.1016/j.bmc.2011.12.057Search in Google Scholar

17. D. P. Bezerra, C. Pessoa, M. O. de Moraes, N. Saker-Neto, E. R. Silveira and L. v. Costa-Lotufo, Overview of the therapeutic potential of piplartine (piperlongumine), Eur. J. Pharm. Sci.48 (2013) 453–463; https://doi.org/10.1016/j.ejps.2012.12.00310.1016/j.ejps.2012.12.003Search in Google Scholar

18. C.-C. Xu, T. Deng, M.-L. Fan, W.-B. Lv, J.-H. Liu and B.-Y. Yu, Synthesis and in vitro antitumor evaluation of dihydroartemisinin-cinnamic acid ester derivatives, Eur. J. Med. Chem.107 (2016) 192–203; https://doi.org/10.1016/j.ejmech.2015.11.00310.1016/j.ejmech.2015.11.003Search in Google Scholar

19. P. Su, Y. Shi, J. Wang, X. Shen and J. Zhang, Anticancer agents derived from natural cinnamic acids, Anticancer Agents Med Chem.15 (2015) 980–987; https://doi.org/10.2174/187152061566615013011112010.2174/1871520615666150130111120Search in Google Scholar

20. P. De, M. Baltas and F. Bedos-Belval, Cinnamic acid derivatives as anticancer agents - a review, Curr. Med. Chem.18 (2011) 1672–1703; https://doi.org/10.2174/09298671179547134710.2174/092986711795471347Search in Google Scholar

21. J. A. Plumb, P. W. Finn, R. J. Williams, M. J. Bandara, M. R. Romero, C. J. Watkins, N. B. La Thangue and R. Brown, Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101, Mol. Cancer Ther.2 (2003) 721–728.Search in Google Scholar

22. P. Revill, N. Mealy, N. Serradell, J. Bolos and E. Rosa, Panobinistat, Drugs Fut.32 (2007) 315–322; https://doi.org/10.1358/dof.2007.032.04.109447610.1358/dof.2007.032.04.1094476Search in Google Scholar

23. K. Pavić, I. Perković, P. Gilja, F. Kozlina, K. Ester, M. Kralj, D. Schols, D. Hadjipavlou-Litina, E. Pontiki and B. Zorc, Design, synthesis and biological evaluation of novel primaquine-cinnamic acid conjugates of amide and acylsemicarbazide type, Molecules21 (2016) 1629–1653; https://doi.org/10.3390/molecules2112162910.3390/molecules21121629Search in Google Scholar

24. K. Pavić, I. Perković, Š. Pospíšilová, M. Machado, D. Fonthinha, M. Prudêncio, J. Jampilek. A. Coffey, L. Endersen, H. Rimac and B. Zorc, Primaquine hybrids as promising antimycobacterial and antimalarial agents, Eur. J. Med. Chem.143 (2018) 769–779; https://doi.org/10.1016/j.ejmech.2017.11.08310.1016/j.ejmech.2017.11.083Search in Google Scholar

25. Z. Herceg and Z. Q. Wang, Functions of poly (ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death, Mutat. Res.477 (2001) 97–110; https://doi.org/10.1016/S0027-5107(01)00111-710.1016/S0027-5107(01)00111-7Search in Google Scholar

26. I. Perković, M. Antunović, I. Marijanović, K. Pavić, K. Ester, M. Kralj, J. Vlainić, I. Kosalec, D. Schols, D. Hadjipavlou-Litina, E. Pontiki and B. Zorc, Novel urea and bis-urea primaquine derivatives with hydroxyphenyl and halogenphenyl substituents: Synthesis and biological evaluation, Eur. J. Med. Chem.124 (2016) 622–636; https://doi.org/10.1016/j.ejmech.2016.08.02110.1016/j.ejmech.2016.08.02127614409Search in Google Scholar

27. S. Hector and J. H. Prehn, Apoptosis signalling proteins as prognostic biomarkers in colorectal cancer: A review, BBA-Rev. Cancer1795 (2009) 117–129; https://doi.org/10.1016/j.bbcan.2008.12.00210.1016/j.bbcan.2008.12.00219167459Search in Google Scholar

28. P. Mabeta and M. S. Pepper, Inhibition of hemangioma development in a syngeneic mouse model correlates with Bcl-2 suppression and the inhibition of Akt kinase activity, Angiogenesis15 (2012) 131–139; https://doi.org/10.1007/s10456-011-9248-710.1007/s10456-011-9248-722198238Search in Google Scholar

29. P. Mabeta, PF573,228 inhibits vascular tumor cell growth, migration as well as angiogenesis, induces apoptosis and abrogates PRAS40 and S6RP phosphorylation, Acta Pharm.66 (2016) 399–410; https://doi.org/10.1515/acph-2016-003110.1515/acph-2016-003127383888Search in Google Scholar

30. I. Ojima, D. Awasthi, L. Wei and K. Haranahalli, Strategic incorporation of fluorine in the drug discovery of new-generation antitubercular agents targeting bacterial cell division protein FtsZ, J. Fluorine Chem.196 (2017) 44–56; https://doi.org/10.1016/j.jfluchem.2016.07.02010.1016/j.jfluchem.2016.07.020544592928555087Search in Google Scholar

31. H.-J. Böhm, D. Banner, S. Bendels, M. Kansy, B. Kuhn, K. Müller, U. Obst-Sander and M. Stahl, Fluorine in medicinal chemistry, ChemBioChem5 (2004) 637–643; https://doi.org/10.1002/cbic.20030102310.1002/cbic.20030102315122635Search in Google Scholar

eISSN:
1846-9558
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Pharmazie, andere