Zitieren

Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2016-2020. Neuro Oncol. 2023;25:iv1-99; DOI:10.1093/NEUONC/NOAD149. Search in Google Scholar

Walker E V., Davis FG, Shaw A, Louchini R, Shack L, Woods R, Kruchko C, Spinelli J, Guiot MC, Perry J, Melin B, Barnholtz-Sloan J, Turner D, King MJ, Hann ah H, Bryant H. Malignant primary brain and other central nervous system tumors diagnosed in Canada from 2009 to 2013. Neuro Oncol. 2019;21:360-9; DOI:10.1093/NEUONC/NOY195. Search in Google Scholar

Philips A, Henshaw DL, Lamburn G, O’Carroll MJ. Brain tumours: rise in glioblastoma multiforme incidence in England 1995-2015 suggests an adverse environmental or lifestyle factor. J Environ Public Health. 2018;2018; DOI:10.1155/2018/7910754. Search in Google Scholar

Dobes M, Khurana VG, Shadbolt B, Jain S, Smith SF, Smee R, Dexter M, Cook R. Increasing incidence of glioblastoma multiforme and meningioma, and decreasing incidence of Schwannoma (2000-2008): findings of a multicenter Australian study. Surg Neurol Int. 2011;2; DOI:10.4103/2152-7806.90696. Search in Google Scholar

Davis FG, Smith TR, Gittleman HR, Ostrom QT, Kruchko C, Barnholtz-Sloan JS. Glioblastoma incidence rate trends in Canada and the United States compared with England, 1995-2015. Neuro Oncol. 2020;22:301-2; DOI:10.1093/NEUONC/NOZ203. Search in Google Scholar

Andersen ZJ, Pedersen M, Weinmayr G, Stafoggia M, Galassi C, Jørgensen JT, Sommar JN, Forsberg B, Olsson D, Oftedal B, Aasvang GM, Schwarze P, Pyko A, Pershagen G, Korek M, Faire U De, Östenson CG, Fratiglioni L, Eriksen KT, Poulsen AH, Tjønn eland A, Braüner EV, Peeters PH, Bueno-De-Mesquita B, Jaensch A, Nagel G, Lang A, Wang M, Tsai MY, Grioni S, Marcon A, Krogh V, Ricceri F, Sacerdote C, Migliore E, Vermeulen R, Sokhi R, Keuken M, De Hoogh K, Beelen R, Vineis P, Cesaroni G, Brunekreef B, Hoek G, Raaschou-Nielsen O. Long-term exposure to ambient air pollution and incidence of brain tumor: the European Study of Cohorts for Air Pollution Effects (ESCAPE). Neuro Oncol. 2018;20:420-32; DOI:10.1093/NEUONC/NOX163. Search in Google Scholar

Villeneuve PJ, Agnew DA, Johnson KC, Mao Y, Paulse B, Dewar R, Dryer D, Kreiger N, Kliewer E, Robson D, Fincham S, Le N. Brain cancer and occupational exposure to magnetic fields among men: results from a Canadian population-based case-control study. Int J Epidemiol. 2002;31:210-7; DOI:10.1093/IJE/31.1.210. Search in Google Scholar

Dho Y-S, Jung K-W, Ha J, Seo Y, Park C-K, Won Y-J, Yoo H. An updated nationwide epidemiology of primary brain tumors in Republic of Korea, 2013. Brain Tumor Res Treat. 2017;5:16; DOI:10.14791/BTRT.2017.5.1.16. Search in Google Scholar

Manoharan N, Julka PK, Rath GK. Descriptive epidemiology of primary brain and CNS tumors in Delhi, 2003-2007. Asian Pac J Cancer Prev. 2012;13:637-40; DOI:10.7314/APJCP.2012.13.2.637. Search in Google Scholar

Ostrom QT, Gittleman H, Stetson L, Virk SM, Barnholtz-Sloan JS. Epidemiology of gliomas. Cancer Treat Res. 2015;163:1-14; DOI:10.1007/978-3-319-12048-5_1. Search in Google Scholar

Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, Wrensch MR, Barnholtz-Sloan JS. The epidemiology of glioma in adults: a state of the science review. Neuro Oncol. 2014;16:896-913; DOI:10.1093/neuonc/nou087. Search in Google Scholar

Wrensch M, Jenkins RB, Chang JS, Yeh RF, Xiao Y, Decker PA, Ballman K V., Berger M, Buckner JC, Chang S, Giann ini C, Halder C, Kollmeyer TM, Kosel ML, Lachance DH, McCoy L, O’Neill BP, Patoka J, Pico AR, Prados M, Quesenberry C, Rice T, Rynearson AL, Smirnov I, Tihan T, Wiemels J, Yang P, Wiencke JK. Variants in the CDKN2B and RTEL1 regions are associated with high grade glioma susceptibility. Nat Genet. 2009;41:905; DOI:10.1038/NG.408. Search in Google Scholar

Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, Simon M, Marie Y, Boisselier B, Delattre JY, Hoang-Xuan K, Hallani S El, Idbaih A, Zelenika D, Andersson U, Henriksson R, Bergenheim AT, Feychting M, Lönn S, Ahlbom A, Schramm J, Linn ebank M, Hemminki K, Kumar R, Hepworth SJ, Price A, Armstrong G, Liu Y, Gu X, Yu R, Lau C, Schoemaker M, Muir K, Swerdlow A, Lathrop M, Bondy M, Houlston RS. Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet. 2009;41:899; DOI:10.1038/NG.407. Search in Google Scholar

Kinnersley B, Houlston RS, Bondy ML. Genome-wide association studies in Glioma. Cancer Epidemiol Biomarkers Prev. 2018;27:418-28; DOI:10.1158/1055-9965.EPI-17-1080. Search in Google Scholar

Melin BS, Barnholtz-Sloan JS, Wrensch MR, Johansen C, Il’yasova D, Kinnersley B, Ostrom QT, Labreche K, Buring J, et al. Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nat Genet. 2017;49:789-94; DOI:10.1038/ng.3823. Search in Google Scholar

Grech N, Dalli T, Mizzi S, Meilak L, Calleja N, Zrinzo A. Rising incidence of glioblastoma multiforme in a well-defined population. Cureus. 2020;12(5):e8195; DOI:10.7759/cureus.8195. Search in Google Scholar

Wrensch M, Minn Y, Chew T, Bondy M, Berger MS. Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro Oncol. 2002;4(4):278-99; DOI:10.1093/neuonc/4.4.278. Search in Google Scholar

Shapiro S, Mealey J Jr. Late anaplastic gliomas in children previously treated for acute lymphoblastic leukemia. Pediatr Neurosci. 1989;15(4):176-80; DOI:10.1159/000120465. Search in Google Scholar

Fontana M, Stanton C, Pompili A, Amadori S, Mandelli F, Meloni G, Riccio A, Rubinstein LJ. Late multifocal gliomas in adolescents previously treated for acute lymphoblastic leukemia. Cancer. 1987;60(7):1510-8; DOI: 10.1002/1097-0142(19871001)60:7<1510::aid-cncr2820600718>3.0. co;2-v. Search in Google Scholar

Salvati M, Frati A, Russo N, Caroli E, Polli FM, Minn iti G, Delfini R. Radiation- induced gliomas: Report of 10 cases and review of the literature. Surg Neurol. 2003;60:60-7; DOI:10.1016/S0090-3019(03)00137-X. Search in Google Scholar

Wingren C, James P, Borrebaeck CAK. Radiation-induced gliomas. Expert Rev Neurother. 2009;9:1511-7; DOI:10.1002/PMIC.200800802. Search in Google Scholar

Liu C, Sage JC, Miller MR, Verhaak RGW, Hippenmeyer S, Vogel H, Foreman O, Bronson RT, Nishiyama A, Luo L, Zong H. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell. 2011;146:209-21; DOI:10.1016/j.cell.2011.06.014. Search in Google Scholar

Holland EC, Hively WP, DePinho RA, Varmus HE. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev. 1998;12(23):3675-85; DOI:10.1101/gad.12.23.3675. Search in Google Scholar

Friedmann -Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, Ellisman MH, Verma IM. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science (1979). 2012;338:1080-4; DOI:10.1126/science.1226929. Search in Google Scholar

Alcantara Llaguno S, Sun D, Pedraza AM, Vera E, Wang Z, Burns DK, Parada LF. Cell-of-origin susceptibility to glioblastoma formation declines with neural lineage restriction. Nat Neurosci. 2019;22:545-55; DOI:10.1038/s41593-018-0333-8. Search in Google Scholar

Lee JH, Lee JE, Kahng JY, Kim SH, Park JS, Yoon SJ, Um JY, Kim WK, Lee JK, Park J, Kim EH, Lee JH, Lee JH, Chung WS, Ju YS, Park SH, Chang JH, Kang SG, Lee JH. Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature. 2018;560:243-7; DOI:10.1038/s41586-018-0389-3. Search in Google Scholar

Piccirillo SGM, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F, Vescovi AL. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature. 2006;444:761-5; DOI:10.1038/nature05349. Search in Google Scholar

Gimple RC, Bhargava S, Dixit D, Rich JN. Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. 2019; DOI:10.1101/gad.324301. Search in Google Scholar

Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. Nature. 2004;432:396-401; DOI:10.1038/NATURE03128. Search in Google Scholar

Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, Richman AR, Silverbush D, Shaw ML, Hebert CM, Dewitt J, Gritsch S, Perez EM, Gonzalez Castro LN, Lan X, Druck N, Rodman C, Dionn e D, Kaplan A, Bertalan MS, Small J, Pelton K, Becker S, Bonal D, Nguyen QD, Servis RL, Fung JM, Mylvaganam R, Mayr L, Gojo J, Haberler C, Geyeregger R, Czech T, Slavc I, Nahed BV, Curry WT, Carter BS, Wakimoto H, Brastianos PK, Batchelor TT, Stemmer-Rachamimov A, Martinez-Lage M, Frosch MP, Stamenkovic I, Riggi N, Rheinbay E, Monje M, Rozenblatt-Rosen O, Cahill DP, Patel AP, Hunter T, Verma IM, Ligon KL, Louis DN, Regev A, Bernstein BE, Tirosh I, Suvà ML. An Integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 2019;178(4):835-49.e21; DOI:10.1016/j. cell.2019.06.024. Search in Google Scholar

Stichel D, Ebrahimi A, Reuss D, Schrimpf D, Ono T, Shirahata M, Reifenberger G, Weller M, Hänggi D, Wick W, Herold-Mende C, Westphal M, Brandner S, Pfister SM, Capper D, Sahm F, von Deimling A. Distribution of EGFR amplification, combined chromosome 7 gain and chromosome 10 loss, and TERT promoter mutation in brain tumors and their potential for the reclassification of IDHwt astrocytoma to glioblastoma. Acta Neuropathol. 2018;136:793-803; DOI:10.1007/s00401-018-1905-0. Search in Google Scholar

Balesaria S, Brock C, Bower M, Clark J, Nicholson SK, Lewis P, De Sanctis S, Evans H, Peterson D, Mendoza N, Glaser MG, Newlands ES, Fisher RA. Loss of chromosome 10 is an independent prognostic factor in high-grade gliomas. Br J Cancer. 1999;81:1371; DOI:10.1038/SJ.BJC.6693403. Search in Google Scholar

Lopez-Gines C, Cerda-Nicolas M, Gil-Benso R, Pellin A, Lopez-Guerrero JA, Callaghan R, Benito R, Roldan P, Piquer J, Llacer J, Barbera J. Association of chromosome 7, chromosome 10 and EGFR gene amplification in glioblastoma multiforme. Clin Neuropathol. 2005;24(5):209-18. Search in Google Scholar

Liu EM, Shi ZF, Li KKW, Malta TM, Chung NYF, Chen H, Chan JYT, Poon MFM, Kwan JSH, Chan DTM, Noushmehr H, Mao Y, Ng HK. Molecular landscape of IDH ‐wild type, pTERT ‐wild type adult glioblastomas. Brain Pathology. 2022;32; DOI:10.1111/BPA.13107. Search in Google Scholar

Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, Mc Henry KT, Pinchback RM, Ligon AH, Cho YJ, Haery L, Greulich H, Reich M, Winckler W, Lawrence MS, Weir BA, Tanaka KE, Chiang DY, Bass AJ, Loo A, Hoffman C, Prensner J, Liefeld T, Gao Q, Yecies D, Signoretti S, Maher E, Kaye FJ, Sasaki H, Tepper JE, Fletcher JA, Tabernero J, Baselga J, Tsao MS, Demichelis F, Rubin MA, Jann e PA, Daly MJ, Nucera C, Levine RL, Ebert BL, Gabriel S, Rustgi AK, Antonescu CR, Ladanyi M, Letai A, Garraway LA, Loda M, Beer DG, True LD, Okamoto A, Pomeroy SL, Singer S, Golub TR, Lander ES, Getz G, Sellers WR, Meyerson M. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463(7283):899-905; DOI:10.1038/nature08822. Search in Google Scholar

Boisselier B, Dugay F, Belaud-Rotureau MA, Coutolleau A, Garcion E, Menei P, Guardiola P, Rousseau A. Whole genome duplication is an early event leading to aneuploidy in IDH-wild type glioblastoma. Oncotarget. 2018;9:36017-28; DOI:10.18632/ONCOTARGET.26330. Search in Google Scholar

Brennan CW, Verhaak RG, McKenn a A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, Beroukhim R, Bernard B, Wu CJ, Genovese G, Shmulevich I, Barnholtz-Sloan J, Zou L, Vegesna R, Shukla SA, Ciriello G, Yung WK, Zhang W, Sougnez C, Mikkelsen T, Aldape K, Bigner DD, Van Meir EG, Prados M, Sloan A, Black KL, Eschbacher J, Finocchiaro G, Friedman W, Andrews DW, Guha A, Iacocca M, O’Neill BP, Foltz G, Myers J, Weisenberger DJ, Penn y R, Kucherlapati R, Perou CM, Hayes DN, Gibbs R, Marra M, Mills GB, Lander E, Spellman P, Wilson R, Sander C, Weinstein J, Meyerson M, Gabriel S, Laird PW, Haussler D, Getz G, Chin L; TCGA Research Network. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462-77; DOI:10.1016/j.cell.2013.09.034. Search in Google Scholar

Bigner SH, Mark J, Burger PC, Mahaley MS Jr, Bullard DE, Muhlbaier LH, Bigner DD. Specific chromosomal abnormalities in malignant human gliomas. Cancer Res. 1988;48(2):405-11. Search in Google Scholar

Tian L, Li Y, Edmonson MN, Zhou X, Newman S, McLeod C, Thrasher A, Liu Y, Tang B, Rusch MC, Easton J, Ma J, Davis E, Trull A, Michael JR, Szlachta K, Mullighan C, Baker SJ, Downing JR, Ellison DW, Zhang J. CICERO: A versatile method for detecting complex and diverse driver fusions using cancer RNA sequencing data. Genome Biol. 2020;21; DOI:10.1186/s13059-020-02043-x. Search in Google Scholar

Parker BC, Ann ala MJ, Cogdell DE, Granberg KJ, Sun Y, Ji P, Li X, Gumin J, Zheng H, Hu L, Yli-Harja O, Haapasalo H, Visakorpi T, Liu X, Liu CG, Sawaya R, Fuller GN, Chen K, Lang FF, Nykter M, Zhang W. The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma. J Clin Invest. 2013;123(2):855-65; DOI: 10.1172/JCI67144. Search in Google Scholar

Bao ZS, Chen HM, Yang MY, Zhang CB, Yu K, Ye WL, Hu BQ, Yan W, Zhang W, Akers J, Ramakrishnan V, Li J, Carter B, Liu YW, Hu HM, Wang Z, Li MY, Yao K, Qiu XG, Kang CS, You YP, Fan XL, Song WS, Li RQ, Su XD, Chen CC, Jiang T. RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1- MET fusion transcript in secondary glioblastomas. Genome Res. 2014;24:1765-73; DOI:10.1101/gr.165126.113. Search in Google Scholar

Frattini V, Trifonov V, Chan JM, Castano A, Lia M, Abate F, Keir ST, Ji AX, Zoppoli P, Niola F, Danussi C, Dolgalev I, Porrati P, Pellegatta S, Heguy A, Gupta G, Pisapia DJ, Canoll P, Bruce JN, McLendon RE, Yan H, Aldape K, Finocchiaro G, Mikkelsen T, Privé GG, Bigner DD, Lasorella A, Rabadan R, Iavarone A. The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet. 2013;45:1141-9; DOI:10.1038/ng.2734. Search in Google Scholar

Fuller GN, Bigner SH. Amplified cellular oncogenes in neoplasms of the human central nervous system. Mutation Research/Reviews in Genetic Toxicology. 1992;276:299-306; DOI:10.1016/0165-1110(92)90016-3. Search in Google Scholar

Inda MDM, Bonavia R, Mukasa A, Narita Y, Sah DWY, Vandenberg S, Brenn an C, Johns TG, Bachoo R, Hadwiger P, Tan P, DePinho RA, Cavenee W, Furnari F. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev. 2010;24:1731; DOI:10.1101/GAD.1890510. Search in Google Scholar

Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C, Pfaff E, Tönjes M, Sill M, Bender S, Kool M, Zapatka M, Becker N, Zucknick M, Hielscher T, Liu XY, Fontebasso AM, Ryzhova M, Albrecht S, Jacob K, Wolter M, Ebinger M, Schuhmann MU, van Meter T, Frühwald MC, Hauch H, Pekrun A, Radlwimmer B, Niehues T, von Komorowski G, Dürken M, Kulozik AE, Madden J, Donson A, Foreman NK, Drissi R, Fouladi M, Scheurlen W, von Deimling A, Monoranu C, Roggendorf W, Herold-Mende C, Unterberg A, Kramm CM, Felsberg J, Hartmann C, Wiestler B, Wick W, Milde T, Witt O, Lindroth AM, Schwartzentruber J, Faury D, Fleming A, Zakrzewska M, Liberski PP, Zakrzewski K, Hauser P, Garami M, Klekner A, Bognar L, Morrissy S, Cavalli F, Taylor MD, van Sluis P, Koster J, Versteeg R, Volckmann R, Mikkelsen T, Aldape K, Reifenberger G, Collins VP, Majewski J, Korshunov A, Lichter P, Plass C, Jabado N, Pfister SM. Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma. Cancer Cell. 2012;22:425-37; DOI: 10.1016/j.ccr.2012.08.024. Search in Google Scholar

Sugawa N, Ekstrand AJ, James CD, Collins VP. Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc Natl Acad Sci USA. 1990;87(21):8602-6; DOI:10.1073/pnas.87.21.8602. Search in Google Scholar

Schwechheimer K, Huang S, Cavenee WK. EGFR gene amplification-rearrangement in human glioblastomas. Int J Cancer. 1995;62(2):145-8; DOI: 10.1002/ijc.2910620206. Search in Google Scholar

Cho J, Pastorino S, Zeng Q, Xu X, Johnson W, Vandenberg S, Verhaak R, Cherniack AD, Watanabe H, Dutt A, Kwon J, Chao YS, Onofrio RC, Chiang D, Yuza Y, Kesari S, Meyerson M. Glioblastoma-derived epidermal growth factor receptor (EGFR) carboxyl-terminal deletion mutants are transforming and are sensitive to EGFR-directed therapies. Cancer Res. 2011;71:7587; DOI:10.1158/0008-5472.CAN-11-0821. Search in Google Scholar

Fadhal E. A Comprehensive analysis of the PI3K/AKT pathway: unveiling key proteins and therapeutic targets for cancer treatment. Cancer Inform. 2023;22; DOI:10.1177/11769351231194273. Search in Google Scholar

Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061-8; DOI: 10.1038/nature07385. Search in Google Scholar

Singh D, Chan JM, Zoppoli P, Niola F, Sullivan R, Castano A, Liu EM, Reichel J, Porrati P, Pellegatta S, Qiu K, Gao Z, Ceccarelli M, Riccardi R, Brat DJ, Guha A, Aldape K, Golfinos JG, Zagzag D, Mikkelsen T, Finocchiaro G, Lasorella A, Rabadan R, Iavarone A. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science (1979). 2012;337:1231-5; DOI:10.1126/science.1220834. Search in Google Scholar

Carlotto BS, Trevisan P, Provenzi VO, Soares FP, Rosa RFM, Varella-Garcia M, Zen PRG. PDGFRA, KIT, and KDR gene amplification in glioblastoma: heterogeneity and clinical significance. Neuromolecular Med. 2023;25(3):441-50; DOI:10.1007/s12017-023-08749-y. Search in Google Scholar

Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brenn an C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN. An integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR and NF1. Cancer Cell. 2010;17:98; DOI:10.1016/J.CCR.2009.12.020. Search in Google Scholar

Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, Karreth F, Poliseno L, Provero P, Di Cunto F, Lieberman J, Rigoutsos I, Pandolfi PP. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell. 2011;147:344; DOI:10.1016/J.CELL.2011.09.029. Search in Google Scholar

Ciriello G, Cerami E, Sander C, Schultz N. Mutual exclusivity analysis identifies oncogenic network modules. Genome Res. 2012;22:398; DOI:10.1101/GR.125567.111. Search in Google Scholar

Sn uderl M, Fazlollahi L, Le LP, Nitta M, Zhelyazkova BH, Davidson CJ, Akhavanfard S, Cahill DP, Aldape KD, Betensky RA, Louis DN, Iafrate AJ. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell. 2011;20:810-7; DOI:10.1016/J.CCR.2011.11.005. Search in Google Scholar

Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61-70; DOI: 10.1038/nature11412. Search in Google Scholar

Ozaki T, Nakagawara A. Role of p53 in cell death and human cancers. Cancers (Basel). 2011;3:994; DOI:10.3390/CANCERS3010994. Search in Google Scholar

Crespo I, Vital AL, Gonzalez-Tablas M, Patino MDC, Otero A, Lopes MC, De Oliveira C, Domingues P, Orfao A, Tabernero MD. Molecular and genomic alterations in glioblastoma multiforme. Am J Pathol. 2015;185:1820-33; DOI:10.1016/J.AJPATH.2015.02.023. Search in Google Scholar

Zacher A, Kaulich K, Stepanow S, Wolter M, Köhrer K, Felsberg J, Malzkorn B, Reifenberger G. Molecular diagnostics of gliomas using next generation sequencing of a glioma-tailored gene panel. Brain Pathology. 2017;27:146-59; DOI:10.1111/bpa.12367. Search in Google Scholar

Fassl A, Geng Y, Sicinski P. CDK4 and CDK6 kinases: from basic science to cancer therapy. Science. 2022;375:eabc1495; DOI:10.1126/SCIENCE. ABC1495. Search in Google Scholar

Chung M, Liu C, Yang HW, Köberlin MS, Cappell SD, Meyer T. Transient hysteresis in CDK4/6 activity underlies passage of the restriction point in G1. Mol Cell. 2019;76:562; DOI:10.1016/J.MOLCEL.2019.08.020. Search in Google Scholar

Nishikawa R, Furnari FB, Lin H, Arap W, Berger MS, Cavenee WK, Su Huang HJ. Loss of P16INK4 expression is frequent in high grade gliomas. Cancer Res. 1995;55(9):1941-5. Search in Google Scholar

Reifenberger G, Reifenberger J, Ichimura K, Meltzer PS, Collins VP. Amplification of multiple genes from chromosomal region 12q13-14 in human malignant gliomas: preliminary mapping of the amplicons shows preferential involvement of CDK4, SAS, and MDM2. Cancer Res. 1994;54(16):4299-303. Search in Google Scholar

Ueki K, Ono Y, Henson JW, Efird JT, von Deimling A, Louis DN. CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res. 1996;56(1):150-3. Search in Google Scholar

deVries NA, Hulsman D, Akhtar W, deJong J, Miles DC, Blom M, vanTellingen O, Jonkers J, VanLohuizen M. Prolonged Ezh2 depletion in glioblastoma causes a robust switch in cell fate resulting in tumor progression. Cell Rep. 2015;10:383-97; DOI:10.1016/j.celrep.2014.12.028. Search in Google Scholar

Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DA, Tönjes M, Hovestadt V, Albrecht S, Kool M, Nantel A, Konermann C, Lindroth A, Jäger N, Rausch T, Ryzhova M, Korbel JO, Hielscher T, Hauser P, Garami M, Klekner A, Bognar L, Ebinger M, Schuhmann MU, Scheurlen W, Pekrun A, Frühwald MC, Roggendorf W, Kramm C, Dürken M, Atkinson J, Lepage P, Montpetit A, Zakrzewska M, Zakrzewski K, Liberski PP, Dong Z, Siegel P, Kulozik AE, Zapatka M, Guha A, Malkin D, Felsberg J, Reifenberger G, von Deimling A, Ichimura K, Collins VP, Witt H, Milde T, Witt O, Zhang C, Castelo-Branco P, Lichter P, Faury D, Tabori U, Plass C, Majewski J, Pfister SM, Jabado N. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482(7384):226-31; DOI:10.1038/nature10833. Search in Google Scholar

Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M, Zhang J, Gajjar A, Dyer MA, Mullighan CG, Gilbertson RJ, Mardis ER, Wilson RK, Downing JR, Ellison DW, Zhang J, Baker SJ. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 2012;44:251-3; DOI:10.1038/ng.1102. Search in Google Scholar

Fontebasso AM, Schwartzentruber J, Khuong-Quang DA, Liu XY, Sturm D, Korshunov A, Jones DTW, Witt H, Kool M, Albrecht S, Fleming A, Hadjadj D, Busche S, Lepage P, Montpetit A, Staffa A, Gerges N, Zakrzewska M, Zakrzewski K, Liberski PP, Hauser P, Garami M, Klekner A, Bognar L, Zadeh G, Faury D, Pfister SM, Jabado N, Majewski J. Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high- grade gliomas. Acta Neuropathol. 2013;125:659-69; DOI:10.1007/s00401-013-1095-8. Search in Google Scholar

Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28:1057-68; DOI:10.1038/nbt.1685. Search in Google Scholar

Lambiv WL, Vassallo I, Delorenzi M, Shay T, Diserens AC, Misra A, Feuerstein B, Murat A, Migliavacca E, Hamou MF, Sciuscio D, Burger R, Domany E, Stupp R, Hegi ME. The Wnt inhibitory factor 1 (WIF1) is targeted in glioblastoma and has a tumor suppressing function potentially by induction of senescence. Neuro Oncol. 2011;13:736-47; DOI:10.1093/neuonc/nor036. Search in Google Scholar

Götze S, Wolter M, Reifenberger G, Müller O, Sievers S. Frequent promoter hypermethylation of Wnt pathway inhibitor genes in malignant astrocytic gliomas. Int J Cancer. 2010;126:2584-93; DOI:10.1002/ijc.24981. Search in Google Scholar

Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. Emerging landscape of oncogenic signatures across human cancers. Nat Genet. 2013;45:1127-33; DOI:10.1038/ng.2762. Search in Google Scholar

Quillien V, Lavenu A, Karayan-Tapon L, Carpentier C, Labussiã̈̈re M, Lesimple T, Chinot O, Wager M, Honn orat J, Saikali S, Fina F, Sanson M, Figarella-Branger D. Comparative assessment of 5 methods (methylation- specific polymerase chain reaction, methylight, pyrosequencing, methylation-sensitive high-resolution melting, and immunohistochemistry) to analyze O6-methylguanine-DNA- methyltranferase in a series of 100 glioblastoma patients. Cancer. 2012;118:4201-11; DOI:10.1002/cncr.27392. Search in Google Scholar

Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997-1003; DOI:10.1056/NEJMoa043331. Search in Google Scholar

Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 1999;59(4):793-7. Search in Google Scholar

Gerson SL. MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer. 2004;4:296-307; DOI:10.1038/nrc1319. Search in Google Scholar

Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, Baylin SB, Herman JG. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343(19):1350-4; DOI:10.1056/NEJM200011093431901. Search in Google Scholar

Ohgaki H, Kleihues P. The definition of primary and secondary glioblastoma. Clinical Cancer Research. 2013;19:764-72; DOI:10.1158/1078-0432.CCR-12-3002. Search in Google Scholar

Bady P, Sciuscio D, Diserens AC, Bloch J, Van Den Bent MJ, Marosi C, Dietrich PY, Weller M, Mariani L, Heppner FL, Mcdonald DR, Lacombe D, Stupp R, Delorenzi M, Hegi ME. MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status. Acta Neuropathol. 2012;124:547-60; DOI:10.1007/s00401-012-1016-2. Search in Google Scholar

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131:803-20; DOI:10.1007/s00401-016-1545-1. Search in Google Scholar

Chen L, Voronovich Z, Clark K, Hands I, Mann as J, Walsh M, Nikiforova MN, Durbin EB, Weiss H, Horbinski C. Predicting the likelihood of an isocitrate dehydrogenase 1 or 2 mutation in diagnoses of infiltrative glioma. Neuro Oncol. 2014;16:1478-83; DOI:10.1093/neuonc/nou097. Search in Google Scholar

Schindler G, Capper D, Meyer J, Janzarik W, Omran H, Herold-Mende C, Schmieder K, Wesseling P, Mawrin C, Hasselblatt M, Louis DN, Korshunov A, Pfister S, Hartmann C, Paulus W, Reifenberger G, Von Deimling A. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol. 2011;121:397-405; DOI:10.1007/s00401-011-0802-6. Search in Google Scholar

Kleinschmidt-Demasters BK, Aisner DL, Birks DK, Foreman NK. Epithelioid GBMs show a high percentage of BRAF V600E mutation. Am J Surg Pathol. 2013;37:685-98; DOI:10.1097/PAS.0b013e31827f9c5e. Search in Google Scholar

Chen AX, Gartrell RD, Zhao J, Upadhyayula PS, Zhao W, Yuan J, Minn s HE, Dovas A, Bruce JN, Lasorella A, Iavarone A, Canoll P, Sims PA, Rabadan R. Single-cell characterization of macrophages in glioblastoma reveals MARCO as a mesenchymal pro-tumor marker. Genome Med. 2021;13:88; DOI:10.1186/s13073-021-00906-x. Search in Google Scholar

Miao Y, Wang J, Li Q, Quan W, Wang Y, Li C, Wu J, Mi D. Prognostic value and immunological role of PDCD1 gene in pan-cancer. Int Immunopharmacol. 2020;89:107080; DOI:10.1016/j.intimp.2020.107080. Search in Google Scholar

Bardhan K, Aksoylar H-I, Le Bourgeois T, Strauss L, Weaver JD, Delcuze B, Charest A, Patsoukis N, Boussiotis VA. Phosphorylation of PD-1-Y248 is a marker of PD-1-mediated inhibitory function in human T cells. Sci Rep. 2019;9:17252; DOI:10.1038/s41598-019-53463-0. Search in Google Scholar

Qian W, Wang Q, Zhang C, Zhu J, Zhang Q, Luo C. M2 macrophage marker CHI3L2 could serve as a potential prognostic and immunological biomarker in glioma by integrated single-cell and bulk RNA-Seq analysis. J Gene Med. 2023;25:e3523; DOI:10.1002/jgm.3523. Search in Google Scholar

Huang L, Wang Z, Chang Y, Wang K, Kang X, Huang R, Zhang Y, Chen J, Zeng F, Wu F, Zhao Z, Li G, Huang H, Jiang T, Hu H. EFEMP2 indicates assembly of M0 macrophage and more malignant phenotypes of glioma. Aging. 2020;12:8397-412; DOI:10.18632/aging.103147. Search in Google Scholar

Chen Y, He J, Chen R, Wang Z, Dai Z, Liang X, Wu W, Luo P, Zhang J, Peng Y, Zhang N, Liu Z, Zhang L, Zhang H, Cheng Q. Pan-cancer analysis of the immunological role of PDIA5: a potential target for immunotherapy. Front Immunol. 2022;13:881722; DOI:10.3389/fimmu.2022.881722. Search in Google Scholar

Mostafa H, Pala A, Högel J, Hlavac M, Dietrich E, Westhoff MA, Nonnenmacher L, Burster T, Georgieff M, Wirtz CR, Schneider EM. Immune phenotypes predict survival in patients with glioblastoma multiforme. J Hematol Oncol. 2016;9:77; DOI:10.1186/s13045-016-0272-3. Search in Google Scholar

Zhou M, Bracci PM, McCoy LS, Hsuang G, Wiemels JL, Rice T, Zheng S, Kelsey KT, Wrensch MR, Wiencke JK. Serum macrophage-derived chemokine/CCL22 levels are associated with glioma risk, CD4 T cell lymphopenia and survival time. Int J Cancer. 2015;137:826-36; DOI:10.1002/ijc.29441. Search in Google Scholar

Li D, Zhang Q, Li L, Chen K, Yang J, Dixit D, Gimple RC, Ci S, Lu C, Hu L, Gao J, Shan D, Li Y, Zhang J, Shi Z, Gu D, Yuan W, Wu Q, Yang K, Zhao L, Qiu Z, Lv D, Gao W, Yang H, Lin F, Wang Q, Man J, Li C, Tao W, Agnihotri S, Qian X, Shi Y, You Y, Zhang N, Rich JN, Wang X. β2-Microglobulin maintains glioblastoma stem cells and induces M2-like polarization of tumor-associated macrophages. Cancer Res. 2022;82:3321-34; DOI:10.1158/0008-5472.CAN-22-0507. Search in Google Scholar

Kyurkchiev D, Naydenov E, Tumangelova-Yuzeir K, Ivanova-Todorova E, Belemezova K, Bochev I, Minkin K, Mourdjeva M, Velikova T, Nachev S, Kyurkchiev S. Cells isolated from human glioblastoma multiforme express progesterone-induced blocking factor (PIBF). Cell Mol Neurobiol. 2014;34:479-89; DOI:10.1007/s10571-014-0031-3. Search in Google Scholar

Belghali MY, Admou B, Brahimi M, Khouchani M, Ba-M’hamed S. Immune tumoral microenvironment in gliomas: focus on CD3+ T cells, Vδ1+ T cells, and microglia/macrophages. Immunol Res. 2022;70:224-39; DOI:10.1007/s12026-022-09260-5. Search in Google Scholar

Huff WX, Kwon JH, Henriquez M, Fetcko K, Dey M. The evolving role of CD8+CD28- immunosenescent T cells in cancer immunology. Int J Mol Sci. 2019;20; DOI:10.3390/ijms20112810. Search in Google Scholar

Jarmuzek P, Kozlowska K, Defort P, Kot M, Zembron-Lacny A. Prognostic values of systemic inflammatory immunological markers in glioblastoma: a systematic review and meta-analysis. Cancers (Basel). 2023;15; DOI:10.3390/cancers15133339. Search in Google Scholar

Czapski B, Baluszek S, Herold-Mende C, Kaminska B. Clinical and immunological correlates of long term survival in glioblastoma. Contemp Oncol (Pozn). 2018;22(1A):81-5; DOI:10.5114/wo.2018.73893. Search in Google Scholar

Zhang Y, Wen Y, Nie J, Wang T, Wang G, Gao Q, Cao Y, Wang H, Qi S, Xie S. MYEF2: an immune infiltration-related prognostic factor in IDH-wild-type glioblastoma. Aging. 2023;15:7760-80; DOI:10.18632/aging.204939. Search in Google Scholar

Dhinakaran AK, Dharmalingam P, Ganesh S, Venkatakrishnan K, Das S, Tan B. Molecular crosstalk between T cells and tumor uncovers GBM-Specific T cell signatures in blood: noninvasive GBM diagnosis using immunosensors. ACS Nano. 2022;16:14134-48; DOI:10.1021/acsnano.2c04160. Search in Google Scholar

Ladomersky E, Scholtens DM, Kocherginsky M, Hibler EA, Bartom ET, Otto-Meyer S, Zhai L, Lauing KL, Choi J, Sosman JA, Wu JD, Zhang B, Lukas R V, Wainwright DA. The coincidence between increasing age, immunosuppression, and the incidence of patients with glioblastoma. Front Pharmacol. 2019;10:200; DOI:10.3389/fphar.2019.00200. Search in Google Scholar

Kamran N, Chandran M, Lowenstein PR, Castro MG. Immature myeloid cells in the tumor microenvironment: implications for immunotherapy. Clin Immunol. 2018;189:34-42; DOI:10.1016/j.clim.2016.10.008. Search in Google Scholar

Perng P, Lim M. Immunosuppressive mechanisms of malignant gliomas: parallels at non-CNS sites. Front Oncol. 2015;5:153; DOI:10.3389/fonc.2015.00153. Search in Google Scholar

Grabowski MM, Sankey EW, Ryan KJ, Chongsathidkiet P, Lorrey SJ, Wilkinson DS, Fecci PE. Immune suppression in gliomas. J Neurooncol. 2021;151:3-12; DOI:10.1007/s11060-020-03483-y. Search in Google Scholar

Moertel CL, Xia J, LaRue R, Waldron NN, Andersen BM, Prins RM, Okada H, Donson AM, Foreman NK, Hunt MA, Penn ell CA, Olin MR. CD200 in CNS tumor-induced immunosuppression: the role for CD200 pathway blockade in targeted immunotherapy. J Immunother Cancer. 2014;2:46; DOI:10.1186/s40425-014-0046-9. Search in Google Scholar

Campian JL, Ghosh S, Kapoor V, Yan R, Thotala S, Jash A, Hu T, Mahadevan A, Rifai K, Page L, Lee BH, Ferrando-Martinez S, Wolfarth AA, Yang SH, Hallahan D, Chheda MG, Thotala D. Long-acting recombinant human interleukin-7, NT-I7, increases cytotoxic CD8 T cells and enhances survival in mouse glioma models. Clin Cancer Res. 2022;28:1229-39; DOI:10.1158/1078-0432.CCR-21-0947. Search in Google Scholar

Ghosh S, Huang J, Inkman M, Zhang J, Thotala S, Tikhonova E, Miheecheva N, Frenkel F, Ataullakhanov R, Wang X, DeNardo D, Hallahan D, Thotala D. Radiation-induced circulating myeloid-derived suppressor cells induce systemic lymphopenia after chemoradiotherapy in patients with glioblastoma. Sci Transl Med. 2023;15:eabn6758; DOI:10.1126/scitranslmed.abn6758. Search in Google Scholar

Chistiakov DA, Chekhonin I V, Gurina OI, Bobryshev Y V, Chekhonin VP. Approaches to improve efficiency of dendritic cell-based therapy of high grade gliomas. Curr Pharm Des. 2016;22:5738-51; DOI:10.2174/1381612822666160719110618. Search in Google Scholar

Yang F, Zhang D, Jiang H, Ye J, Zhang L, Bagley SJ, Winkler J, Gong Y, Fan Y. Small-molecule toosendanin reverses macrophage-mediated immunosuppression to overcome glioblastoma resistance to immunotherapy. Sci Transl Med. 2023;15:eabq3558; DOI:10.1126/scitranslmed. abq3558. Search in Google Scholar

Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: A Clinical Review. JAMA. 2013;310:1842-50; DOI:10.1001/JAMA.2013.280319. Search in Google Scholar

Manini I, Caponn etto F, Bartolini A, Ius T, Mariuzzi L, Loreto C Di, Beltrami AP, Cesselli D. Role of microenvironment in glioma invasion: what we learned from in vitro models. Int J Mol Sci. 2018;19(1):147; DOI:10.3390/ijms19010147. Search in Google Scholar

Klemm F, Maas RR, Bowman RL, Kornete M, Soukup K, Nassiri S, Brouland JP, Iacobuzio-Donahue CA, Brenn an C, Tabar V, Gutin PH, Daniel RT, Hegi ME, Joyce JA. Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells. Cell. 2020;181:1643-1660.e17; DOI:10.1016/J. CELL.2020.05.007. Search in Google Scholar

Dapash M, Hou D, Castro B, Lee-Chang C, Lesniak MS. The interplay between glioblastoma and its microenvironment. Cells. 2021;10(9):2257; DOI:10.3390/cells10092257. Search in Google Scholar

Schiffer D, Ann ovazzi L, Casalone C, Corona C, Mellai M. Glioblastoma: microenvironment and niche concept. Cancers (Basel). 2018;11(1):5; DOI:10.3390/cancers11010005. Search in Google Scholar

Liang J, Piao Y, Holmes L, Fuller GN, Henry V, Tiao N, de Groot JF. Neutrophils promote the malignant glioma phenotype through S100A4. Clin Cancer Res. 2014;20(1):187-98; DOI:10.1158/1078-0432. CCR-13-1279. Search in Google Scholar

Kohanbash G, Okada H. Myeloid-derived suppressor cells (MDSCs) in gliomas and glioma-development. Immunol Invest. 2012;41:658-79; DOI:10.3109/08820139.2012.689591. Search in Google Scholar

Feng X, Szulzewsky F, Yerevanian A, Chen Z, Heinzmann D, Rasmussen RD, Alvarez-Garcia V, Kim Y, Wang B, Tamagno I, Zhou H, Li X, Kettenmann H, Ransohoff RM, Hambardzumyan D. Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget. 2015;6:15077; DOI:10.18632/ONCOTARGET.3730. Search in Google Scholar

Ho IAW, Shim WSN. Contribution of the microenvironmental niche to glioblastoma heterogeneity. Biomed Res Int. 2017;2017; DOI:10.1155/2017/9634172. Search in Google Scholar

Mineharu Y, Castro MG, Lowenstein PR, Sakai N, Miyamoto S. Dendritic cell-based immunotherapy for glioma: multiple regimens and implications in clinical trials. Neurol Med Chir (Tokyo). 2013;53(11):741-54; DOI:10.2176/nmc.ra2013-0234. Search in Google Scholar

DeCordova S, Shastri A, Tsolaki AG, Yasmin H, Klein L, Singh SK, Kishore U. Molecular heterogeneity and immunosuppressive microenvironment in glioblastoma. Front Immunol. 2020;11:1402; DOI:10.3389/fimmu.2020.01402. Search in Google Scholar

Perus LJM, Walsh LA. Microenvironmental heterogeneity in brain malignancies. Front Immunol. 2019;10:2294; DOI:10.3389/fimmu.2019.02294. Search in Google Scholar

Kane JR. The role of brain vasculature in glioblastoma. Mol Neurobiol. 2019;56:6645-53; DOI:10.1007/S12035-019-1561-Y. Search in Google Scholar

Hardee ME, Zagzag D. Mechanisms of glioma-associated neovascularization. Am J Pathol. 2012;181:1126-41; DOI:10.1016/J. AJPATH.2012.06.030. Search in Google Scholar

Dimberg A. The glioblastoma vasculature as a target for cancer therapy. Biochem Soc Trans. 2014;42:1647-52; DOI:10.1042/BST20140278. Search in Google Scholar

Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis. 2023;26:313-47; DOI:10.1007/S10456-023-09876-7. Search in Google Scholar

Yang L, Lin C, Wang L, Guo H, Wang X. Hypoxia and hypoxia-inducible factors in glioblastoma multiforme progression and therapeutic implications. Exp Cell Res. 2012;318:2417-26; DOI:10.1016/J. YEXCR.2012.07.017. Search in Google Scholar

Monteiro AR, Hill R, Pilkington GJ, Madureira PA. The role of hypoxia in glioblastoma invasion. Cells. 2017;6(4):45; DOI:10.3390/cells6040045. Search in Google Scholar

Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955;9:539-49; DOI:10.1038/BJC.1955.55. Search in Google Scholar

Park JH, Lee HK. Current understanding of hypoxia in glioblastoma multiforme and its response to immunotherapy. Cancers (Basel). 2022;14(5):1176; DOI:10.3390/cancers14051176. Search in Google Scholar

Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol. 2005;7:134-53; DOI:10.1215/S1152851704001115. Search in Google Scholar

Zagzag D, Lukyanov Y, Lan L, Ali MA, Esencay M, Mendez O, Yee H, Voura EB, Newcomb EW. Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Lab Invest. 2006;86:1221-32; DOI:10.1038/labinvest.3700482. Search in Google Scholar

Papale M, Buccarelli M, Mollinari C, Russo MA, Pallini R, Ricci-Vitiani L, Tafani M. Hypoxia, Inflammation and necrosis as determinants of glioblastoma cancer stem cells progression. Int J Mol Sci. 2020;21(8):2660; DOI:10.3390/ijms21082660. Search in Google Scholar

Brat DJ, Castellano-Sanchez AA, Hunter SB, Pecot M, Cohen C, Hammond EH, Devi SN, Kaur B, Van Meir EG. Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res. 2004;64:920-7; DOI:10.1158/0008-5472.CAN-03-2073. Search in Google Scholar

Rong Y, Durden DL, Van Meir EG, Brat DJ. “Pseudopalisading” necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol. 2006;65:529-39; DOI:10.1097/00005072-200606000-00001. Search in Google Scholar

Pang L, Dunterman M, Xuan W, Gonzalez A, Lin Y, Hsu WH, Khan F, Hagan RS, Muller WA, Heimberger AB, Chen P. Circadian regulator CLOCK promotes tumor angiogenesis in glioblastoma. Cell Rep. 2023;42(2):112127; DOI:10.1016/j.celrep.2023.112127. Search in Google Scholar

Dalmay T, Edwards DR. MicroRNAs and the hallmarks of cancer. Oncogene. 2006;25:6170-5; DOI:10.1038/SJ.ONC.1209911. Search in Google Scholar

Balandeh E, Mohammadshafie K, Mahmoudi Y, Hossein Pourhanifeh M, Rajabi A, Bahabadi ZR, Mohammadi AH, Rahimian N, Hamblin MR, Mirzaei H. Roles of non-coding RNAs and angiogenesis in glioblastoma. Front Cell Dev Biol. 2021;9:716462; DOI:10.3389/FCELL.2021.716462. Search in Google Scholar

Li D, Zhang Z, Xia C, Niu C, Zhou W. Non-coding RNAs in Glioma microenvironment and angiogenesis. Front Mol Neurosci. 2021;14:763610; DOI:10.3389/FNMOL.2021.763610. Search in Google Scholar

Jiang Y, Zhao J, Xu J, Zhang H, Zhou J, Li H, Zhang G, Xu K, Jing Z. Glioblastoma-associated microglia-derived exosomal circKIF18A promotes angiogenesis by targeting FOXC2. Oncogene. 2022;41:3461-73; DOI:10.1038/S41388-022-02360-4. Search in Google Scholar

Bae E, Huang P, Müller-Greven G, Hambardzumyan D, Sloan AE, Nowacki AS, Marko N, Carlin CR, Gladson CL. Integrin α3β1 promotes vessel formation of glioblastoma-associated endothelial cells through calcium-mediated macropinocytosis and lysosomal exocytosis. Nat Commun. 2022;13(1):4268; DOI:10.1038/S41467-022-31981-2. Search in Google Scholar

Carruthers RD, Ahmed SU, Ramachandran S, Strathdee K, Kurian KM, Hedley A, Gomez-Roman N, Kalna G, Neilson M, Gilmour L, Stevenson KH, Hammond EM, Chalmers AJ. Replication stress drives constitutive activation of the DNA damage response and radioresistance in glioblastoma stem-like cells. Cancer Res. 2018;78(17):5060-71; DOI:10.1158/0008-5472.CAN-18-0569/653606. Search in Google Scholar

Biserova K, Jakovlevs A, Uljanovs R, Strumfa I. Cancer stem cells: significance in origin, pathogenesis and treatment of glioblastoma. Cells. 2021;10(3):621; DOI:10.3390/cells10030621. Search in Google Scholar

Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC. PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev. 2008;22(4):436-48; DOI:10.1101/gad.1627008. Search in Google Scholar

Schiffer D, Ann ovazzi L, Mazzucco M, Mellai M. The microenvironment in gliomas: phenotypic expressions. Cancers (Basel). 2015;7(4):2352-9; DOI:10.3390/cancers7040896. Search in Google Scholar

Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H. The brain tumor microenvironment. Glia. 2012;60(3):502-14; DOI:10.1002/GLIA.21264. Search in Google Scholar

Hira VVV, Wormer JR, Kakar H, Breznik B, van der Swaan B, Hulsbos R, Tigchelaar W, Tonar Z, Khurshed M, Molenaar RJ, Van Noorden CJF. Periarteriolar glioblastoma stem cell niches express bone marrow hematopoietic stem cell niche proteins. J Histochem Cytochem. 2018;66(3):155-173; DOI:10.1369/0022155417749174. Search in Google Scholar

Guardia GDA, Correa BR, Araujo PR, Qiao M, Burns S, Penalva LOF, Galante PAF. Proneural and mesenchymal glioma stem cells display major differences in splicing and lncRNA profiles. NPJ Genom Med. 2020;5:2; DOI:10.1038/s41525-019-0108-5. Search in Google Scholar

Deshors P, Toulas C, Arnauduc F, Malric L, Siegfried A, Nicaise Y, Lemarié A, Larrieu D, Tosolini M, Cohen-Jonathan Moyal E, Courtade-Saidi M, Evrard SM. Ionizing radiation induces endothelial transdifferentiation of glioblastoma stem-like cells through the Tie2 signaling pathway. Cell Death Dis. 2019;10(11):816; DOI:10.1038/s41419-019-2055-6. Search in Google Scholar

Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W, Sawaya R, Heimberger AB. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol. 2010;12(11):1113-25; DOI:10.1093/NEUONC/NOQ082. Search in Google Scholar

Bikfalvi A, da Costa CA, Avril T, Barnier JV, Bauchet L, Brisson L, Cartron PF, Castel H, Chevet E, Chneiweiss H, Clavreul A, Constantin B, Coronas V, Daubon T, Dontenwill M, Ducray F, Enz-Werle N, Figarella-Branger D, Fournier I, Frenel JS, Gabut M, Galli T, Gavard J, Huberfeld G, Hugnot JP, Idbaih A, Junier MP, Mathivet T, Menei P, Meyronet D, Mirjolet C, Morin F, Mosser J, Moyal EC, Rousseau V, Salzet M, Sanson M, Seano G, Tabouret E, Tchoghandjian A, Turchi L, Vallette FM, Vats S, Verreault M, Virolle T. Challenges in glioblastoma research: focus on the tumor microenvironment. Trends Cancer. 2023;9(1):9-27; DOI: 10.1016/j.trecan.2022.09.005. Search in Google Scholar

Broekman ML, Maas SLN, Abels ER, Mempel TR, Krichevsky AM, Breakefield XO. Multidimensional communication in the microenvirons of glioblastoma. Nat Rev Neurol. 2018;14:482-95; DOI:10.1038/S41582-018-0025-8. Search in Google Scholar

Khan F, Pang L, Dunterman M, Lesniak MS, Heimberger AB, Chen P. Macrophages and microglia in glioblastoma: heterogeneity, plasticity, and therapy. J Clin Invest. 2023;133; DOI:10.1172/JCI163446. Search in Google Scholar

Hambardzumyan D, Bergers G. Glioblastoma: defining tumor niches. Trends Cancer. 2015;1(4):252-65; DOI:10.1016/j.trecan.2015.10.009. Search in Google Scholar

Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 2016;19(1):20-7; DOI:10.1038/nn.4185. Search in Google Scholar

Morantz RA, Wood GW, Foster M, Clark M, Gollahon K. Macrophages in experimental and human brain tumors. Part 1: studies of the macrophage content of experimental rat brain tumors of varying immunogenicity. J Neurosurg. 1979;50(3):298-304; DOI:10.3171/jns.1979.50.3.0298. Search in Google Scholar

Gutmann DH, Kettenmann H. Microglia/brain macrophages as central drivers of brain tumor pathobiology. Neuron. 2019;104:442-9; DOI: 10.1016/j.neuron.2019.08.028. Search in Google Scholar

Wu M, Wu L, Wu W, Zhu M, Li J, Wang Z, Li J, Ding R, Liang Y, Li L, Zhang T, Huang B, Cai Y, Li K, Li L, Zhang R, Hu B, Lin F, Wang X, Zheng S, Chen J, You Y, Jiang T, Zhang J, Chen H, Wang Q. Phagocytosis of glioma cells enhances the immunosuppressive phenotype of bone marrow-derived macrophages. Cancer Res. 2023;83:771-85; DOI:10.1158/0008-5472.CAN-22-1570. Search in Google Scholar

Pan Z, Zhao R, Li B, Qi Y, Qiu W, Guo Q, Zhang S, Zhao S, Xu H, Li M, Gao Z, Fan Y, Xu J, Wang H, Wang S, Qiu J, Wang Q, Guo X, Deng L, Zhang P, Xue H, Li G. EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3. Mol Cancer. 2022;21(1):16; DOI:10.1186/S12943-021-01485-6. Search in Google Scholar

Xu J, Zhang J, Zhang Z, Gao Z, Qi Y, Qiu W, Pan Z, Guo Q, Li B, Zhao S, Guo X, Qian M, Chen Z, Wang S, Gao X, Zhang S, Wang H, Guo X, Zhang P, Zhao R, Xue H, Li G. Hypoxic glioma-derived exosomes promote M2-like macrophage polarization by enhancing autophagy induction. Cell Death Dis. 2021;12(4):373; DOI:10.1038/S41419-021-03664-1. Search in Google Scholar

Liu T, Zhu C, Chen X, Guan G, Zou C, Shen S, Wu J, Wang Y, Lin Z, Chen L, Cheng P, Cheng W, Wu A. Ferroptosis, as the most enriched programmed cell death process in glioma, induces immunosuppression and immunotherapy resistance. Neuro Oncol. 2022;24:1113-25; DOI:10.1093/NEUONC/NOAC033. Search in Google Scholar

Yu K, Lin CCJ, Hatcher A, Lozzi B, Kong K, Huang-Hobbs E, Cheng YT, Beechar VB, Zhu W, Zhang Y, Chen F, Mills GB, Mohila CA, Creighton CJ, Noebels JL, Scott KL, Deneen B. PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature. 2020;578:166-71; DOI:10.1038/s41586-020-1952-2. Search in Google Scholar

Krishna S, Choudhury A, Keough MB, Seo K, Ni L, Kakaizada S, Lee A, Aabedi A, Popova G, Lipkin B, Cao C, Nava Gonzales C, Sudharshan R, Egladyous A, Almeida N, Zhang Y, Molinaro AM, Venkatesh HS, Daniel AGS, Shamardani K, Hyer J, Chang EF, Findlay A, Phillips JJ, Nagarajan S, Raleigh DR, Brang D, Monje M, Hervey-Jumper SL. Glioblastoma remodelling of human neural circuits decreases survival. Nature. 2023;617:599-607; DOI:10.1038/S41586-023-06036-1. Search in Google Scholar

Pan Y, Hysinger JD, Barron T, Schindler NF, Cobb O, Guo X, Yalçın B, Anastasaki C, Mulinyawe SB, Ponn uswami A, Scheaffer S, Ma Y, Chang KC, Xia X, Toonen JA, Lenn on JJ, Gibson EM, Huguenard JR, Liau LM, Goldberg JL, Monje M, Gutmann DH. NF1 mutation drives neuronal activity-dependent initiation of optic glioma. Nature. 2021;594:277-82; DOI:10.1038/s41586-021-03580-6. Search in Google Scholar

Curry RN, Aiba I, Meyer J, Lozzi B, Ko Y, McDonald MF, Rosenbaum A, Cervantes A, Huang-Hobbs E, Cocito C, Greenfield JP, Jalali A, Gavvala J, Mohila C, Serin Harmanci A, Noebels J, Rao G, Deneen B. Glioma epileptiform activity and progression are driven by IGSF3-mediated potassium dysregulation. Neuron. 2023;111:682-95; DOI:10.1016/j. neuron.2023.01.013. Search in Google Scholar

Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y, Nagaraja S, Gibson EM, Mount CW, Polepalli J, Mitra SS, Woo PJ, Malenka RC, Vogel H, Bredel M, Mallick P, Monje M. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell. 2015;161:803-16; DOI: 10.1016/j.cell.2015.04.012. Search in Google Scholar

Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, Arzt M, Tam LT, Espenel C, Ponn uswami A, Ni L, Woo PJ, Taylor KR, Agarwal A, Regev A, Brang D, Vogel H, Hervey-Jumper S, Bergles DE, Suvà ML, Malenka RC, Monje M. Electrical and synaptic integration of glioma into neural circuits. Nature. 2019;573:539-45; DOI:10.1038/s41586-019-1563-y. Search in Google Scholar

Hua T, Shi H, Zhu M, Chen C, Su Y, Wen S, Zhang X, Chen J, Huang Q, Wang H. Glioma‑neuronal interactions in tumor progression: mechanism, therapeutic strategies and perspectives (review). Int J Oncol. 2022;61(3):104; DOI:10.3892/IJO.2022.5394. Search in Google Scholar

Corsi L, Mescola A, Alessandrini A. Glutamate receptors and glioblastoma multiforme: An old “route” for new perspectives. Int J Mol Sci. 2019;20(7):1796; DOI:10.3390/ijms20071796. Search in Google Scholar

Mollazadeh H, Mohtashami E, Mousavi SH, Soukhtanloo M, Vahedi MM, Hosseini A, Afshari AR, Sahebkar A. Deciphering the role of glutamate signaling in glioblastoma multiforme: current therapeutic modalities and future directions. Curr Pharm Des. 2020;26:4777-88; DOI :10.2174/1381612826666200603132456. Search in Google Scholar

So J-S, Kim H, Han K-S. Mechanisms of invasion in glioblastoma: extracellular matrix, Ca2+ signaling, and glutamate. Front Cell Neurosci. 2021;15:663092; DOI:10.3389/fncel.2021.663092. Search in Google Scholar

Venkataramani V, Tanev DI, Strahle C, Studier-Fischer A, Fankhauser L, Kessler T, Körber C, Kardorff M, Ratliff M, Xie R, Horstmann H, Messer M, Paik SP, Knabbe J, Sahm F, Kurz FT, Acikgöz AA, Herrmannsdörfer F, Agarwal A, Bergles DE, Chalmers A, Miletic H, Turcan S, Mawrin C, Hänggi D, Liu HK, Wick W, Winkler F, Kuner T. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature. 2019;573:532-8; DOI:10.1038/S41586-019-1564-X. Search in Google Scholar

Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, Weil S, Horstmann H, Wiestler B, Syed M, Huang L, Ratliff M, Karimian Jazi K, Kurz FT, Schmenger T, Lemke D, Gömmel M, Pauli M, Liao Y, Häring P, Pusch S, Herl V, Steinhäuser C, Krunic D, Jarahian M, Miletic H, Berghoff AS, Griesbeck O, Kalamakis G, Garaschuk O, Preusser M, Weiss S, Liu H, Heiland S, Platten M, Huber PE, Kuner T, Von Deimling A, Wick W, Winkler F. Brain tumour cells interconnect to a functional and resistant network. Nature. 2015;528:93-8; DOI:10.1038/NATURE16071. Search in Google Scholar

Venkataramani V, Yang Y, Schubert MC, Reyhan E, Tetzlaff SK, Wißmann N, Botz M, Soyka SJ, Beretta CA, Pramatarov RL, Fankhauser L, Garofano L, Freudenberg A, Wagner J, Tanev DI, Ratliff M, Xie R, Kessler T, Hoffmann DC, Hai L, Dörflinger Y, Hoppe S, Yabo YA, Golebiewska A, Niclou SP, Sahm F, Lasorella A, Slowik M, Döring L, Iavarone A, Wick W, Kuner T, Winkler F. Glioblastoma hijacks neuronal mechanisms for brain invasion. Cell. 2022;185:2899-917.e31; DOI:10.1016/J. CELL.2022.06.054. Search in Google Scholar

Huang-Hobbs E, Cheng YT, Ko Y, Luna-Figueroa E, Lozzi B, Taylor KR, McDonald M, He P, Chen HC, Yang Y, Maleki E, Lee ZF, Murali S, Williamson MR, Choi D, Curry R, Bayley J, Woo J, Jalali A, Monje M, Noebels JL, Harmanci AS, Rao G, Deneen B. Remote neuronal activity drives glioma progression through SEMA4F. Nature. 2023;619:844-50; DOI:10.1038/S41586-023-06267-2. Search in Google Scholar

Wang C, Zhao Q, Zheng X, Li S, Chen J, Zhao H, Chen F, Cui L, Li W. Decellularized brain extracellular matrix slice glioblastoma culture model recapitulates the interaction between cells and the extracellular matrix without a nutrient-oxygen gradient interference. Acta Biomater. 2023;158:132-150; DOI:10.1016/j.actbio.2022.12.044. Search in Google Scholar

Marino S, Menn a G, Di Bonaventura R, Lisi L, Mattogno P, Figà F, Bilgin L, D’Alessandris QG, Olivi A, Della Pepa GM. The extracellular matrix in glioblastomas: a glance at its structural modifications in shaping the tumoral microenvironment– a systematic review. Cancers (Basel). 2023;15(6):1879; DOI:10.3390/cancers15061879. Search in Google Scholar

Pibuel MA, Poodts D, Díaz M, Hajos SE, Lompardía SL. The scrambled story between hyaluronan and glioblastoma. J Biol Chem. 2021;296:100549; DOI:10.1016/J.JBC.2021.100549. Search in Google Scholar

von Spreckelsen N, Fadzen CM, Hartrampf N, Ghotmi Y, Wolfe JM, Dubey S, Yang BY, Kijewski MF, Wang S, Farquhar C, Bergmann S, Zdioruk M, Wasserburg JR, Scott B, Murrell E, Bononi FC, Luyt LG, DiCarli M, Lamfers MLM, Ligon KL, Chiocca EA, Viapiano MS, Pentelute BL, Lawler SE, Cho CF. Targeting glioblastoma using a novel peptide specific to a deglycosylated isoform of brevican. Adv Ther (Weinh). 2021;4(4):2000244; DOI:10.1002/ADTP.202000244. Search in Google Scholar

Angel I, Pilo Kerman O, Rousso-Noori L, Friedmann -Morvinski D. Tenascin C promotes cancer cell plasticity in mesenchymal glioblastoma. Oncogene. 2020;39:6990-7004; DOI:10.1038/S41388-020-01506-6. Search in Google Scholar

Wu S, Liu C, Wei X, Nong WX, Lin LN, Li F, Xie XX, Liao XS, Luo B, Zhang QM, Xiao SW. High expression of fibronectin 1 predicts a poor prognosis in glioblastoma. Curr Med Sci. 2022;42(5):1055-65; DOI:10.1007/s11596-022-2638-9. Search in Google Scholar

Joseph JV, Magaut CR, Storevik S, Geraldo LH, Mathivet T, Latif MA, Rudewicz J, Guyon J, Gambaretti M, Haukas F, Trones A, Rømo Ystaas LA, Hossain JA, Ninzima S, Cuvellier S, Zhou W, Tomar T, Klink B, Rane L, Irving BK, Marrison J, O’Toole P, Wurdak H, Wang J, Di Z, Birkeland E, Berven FS, Winkler F, Kruyt FAE, Bikfalvi A, Bjerkvig R, Daubon T, Miletic H. TGF-β promotes microtube formation in glioblastoma through thrombospondin 1. Neuro Oncol. 2022;24:541-53; DOI:10.1093/NEUONC/NOAB212. Search in Google Scholar

Fu Z, Zhu G, Luo C, Chen Z, Dou Z, Chen Y, Zhong C, Su S, Liu F. Matricellular protein tenascin C: Implications in glioma progression, gliomagenesis, and treatment. Front Oncol. 2022;12:971462; DOI:10.3389/FONC.2022.971462. Search in Google Scholar

Mooney KL, Choy W, Sidhu S, Pelargos P, Bui TT, Voth B, Barnette N, Yang I. The role of CD44 in glioblastoma multiforme. J Clin Neurosci. 2016;34:1-5; DOI:10.1016/J.JOCN.2016.05.012. Search in Google Scholar

Tews DS. Adhesive and invasive features in gliomas. Pathol Res Pract. 2000;196:701-11; DOI:10.1016/S0344-0338(00)80122-3. Search in Google Scholar

Ellert-Miklaszewska A, Poleszak K, Pasierbinska M, Kaminska B. Integrin signaling in glioma pathogenesis: from biology to therapy. Int J Mol Sci. 2020;21(3):888; DOI:10.3390/ijms21030888. Search in Google Scholar

Hatoum A, Mohammed R, Zakieh O. The unique invasiveness of glioblastoma and possible drug targets on extracellular matrix. Cancer Manag Res. 2019;11:1843-55; DOI:10.2147/CMAR.S186142. Search in Google Scholar

Quesnel A, Karagiann is GS, Filippou PS. Extracellular proteolysis in glioblastoma progression and therapeutics. Biochim Biophys Acta Rev Cancer. 2020;1874(2):188428; DOI:10.1016/J.BBCAN.2020.188428. Search in Google Scholar

Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Ann u Rev Cell Dev Biol. 2001;17:463-516; DOI:10.1146/ANNUREV.CELLBIO.17.1.463. Search in Google Scholar

Mason SD, Joyce JA. Proteolytic networks in cancer. Trends Cell Biol. 2011;21:228-37; DOI:10.1016/J.TCB.2010.12.002. Search in Google Scholar

Vizovisek M, Ristanovic D, Menghini S, Christiansen MG, Schuerle S. The tumor proteolytic landscape: A challenging frontier in cancer diagnosis and therapy. Int J Mol Sci. 2021;22:1-30; DOI:10.3390/IJMS22052514. Search in Google Scholar

Mohamed MM, Sloane BF. Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer. 2006;6:764-75; DOI:10.1038/NRC1949. Search in Google Scholar

Breznik B, Motaln H, Turnšek TL. Proteases and cytokines as mediators of interactions between cancer and stromal cells in tumours. Biol Chem. 2017;398:709-19; DOI:10.1515/HSZ-2016-0283. Search in Google Scholar

Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141:52-67; DOI: 10.1016/J.CELL.2010.03.015. Search in Google Scholar

Djediai S, Gonzalez Suarez N, El Cheikh‐Hussein L, Rodriguez Torres S, Gresseau L, Dhayne S, Joly‐lopez Z, Ann abi B. MT1‐MMP cooperates with TGF‐β receptor‐mediated signaling to trigger SNAIL and induce epithelial‐to‐mesenchymal‐like transition in U87 glioblastoma cells. Int J Mol Sci. 2021;22(23):13006; DOI:10.3390/IJMS222313006. Search in Google Scholar

Zhai Y, Sang W, Su L, Shen Y, Hu Y, Zhang W. Analysis of the expression and prognostic value of MT1-MMP, β1-integrin and YAP1 in glioma. Open Med (Wars). 2022;17(1):492-507; DOI:10.1515/med-2022-0449. Search in Google Scholar

Kanderi T, Munakomi S, Gupta V. Glioblastoma multiforme [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 Feb 12]. 36 p. Available from: https://www.ncbi.nlm.nih.gov/books/NBK558954/. Search in Google Scholar

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987-96; DOI:10.1056/nejmoa043330. Search in Google Scholar

Koshy M, Villano JL, Dolecek TA, Howard A, Mahmood U, Chmura SJ, Weichselbaum RR, McCarthy BJ. Improved survival time trends for glioblastoma using the SEER 17 population-based registries. J Neurooncol. 2012;107(1):207-12; DOI:10.1007/s11060-011-0738-7. Search in Google Scholar

Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, Baylin SB, Herman JG. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents . N Engl J Med. 2000;343(19):1350-4; DOI:10.1056/nejm200011093431901. Search in Google Scholar

Songtao Q, Lei Y, Si G, Yanqing D, Huixia H, Xuelin Z, Lanxiao W, Fei Y. IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci. 2012;103(2):269-73; DOI:10.1111/j.1349-7006.2011.02134.x. Search in Google Scholar

Weller M, Le Rhun E. How did lomustine become standard of care in recurrent glioblastoma? Cancer Treat Rev. 2020;87:102029; DOI: 10.1016/j.ctrv.2020.102029. Search in Google Scholar

Kaina B, Christmann M. DNA repair in personalized brain cancer therapy with temozolomide and nitrosoureas. DNA Repair (Amst). 2019;78:128-141; DOI:10.1016/j.dnarep.2019.04.007. Search in Google Scholar

Wang EJ, Chen JS, Jain S, Morshed RA, Haddad AF, Gill S, Beniwal AS, Aghi MK. Immunotherapy resistance in glioblastoma. Front Genet. 2021;12:750675; DOI:10.3389/fgene.2021.750675. Search in Google Scholar

Lee SY. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016;3(3):198-210; DOI:10.1016/j.gendis.2016.04.007. Search in Google Scholar

Dymova MA, Kuligina E V., Richter VA. Molecular mechanisms of drug resistance in glioblastoma. Int J Mol Sci. 2021;22(12):6385; DOI:10.3390/ijms22126385. Search in Google Scholar

Mattei V, Santilli F, Martellucci S, Monache SD, Fabrizi J, Colapietro A, Angelucci A, Festuccia C. The importance of tumor stem cells in glioblastoma resistance to therapy. Int J Mol Sci. 2021;22(8):3863; DOI:10.3390/ijms22083863. Search in Google Scholar

Ou A, Alfred Yung WK, Majd N. Molecular mechanisms of treatment resistance in glioblastoma. Int J Mol Sci. 2021;22(1):351; DOI:10.3390/ijms22010351. Search in Google Scholar

Pappenheimer JR, Renkin EM, Borrero LM. Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. Am J Physiol. 1951;167(1):13-46; DOI:10.1152/ajplegacy.1951.167.1.13. Search in Google Scholar

Ueda K, Cornwell MM, Gottesman MM, Pastan I, Roninson IB, Ling V, Riordan JR. The mdrl gene, responsible for multidrug-resistance, codes for P-glycoprotein. Biochem Biophys Res Commun. 1986;141(3):956-62; DOI:10.1016/S0006-291X(86)80136-X. Search in Google Scholar

Kizilbash SH, Gupta SK, Chang K, Kawashima R, Parrish KE, Carlson BL, Bakken KK, Mladek AC, Schroeder MA, Decker PA, Kitange GJ, Shen Y, Feng Y, Protter AA, Elmquist WF, Sarkaria JN. Restricted delivery of talazoparib across the blood-brain barrier limits the sensitizing effects of PARP inhibition on temozolomide therapy in glioblastoma. Mol Cancer Ther. 2017;16(12):2735-46; DOI:10.1158/1535-7163. MCT-17-0365. Search in Google Scholar

Becker CM, Oberoi RK, McFarren SJ, Muldoon DM, Pafundi DH, Pokorny JL, Brinkmann DH, Ohlfest JR, Sarkaria JN, Largaespada DA, Elmquist WF. Decreased affinity for efflux transporters increases brain penetrance and molecular targeting of a PI3K/mTOR inhibitor in a mouse model of glioblastoma. Neuro Oncol. 2015;17(9):1210-9; DOI:10.1093/neuonc/nov081. Search in Google Scholar

Quick A, Patel D, Hadziahmetovic M, Chakravarti A, Mehta M. Current therapeutic paradigms in glioblastoma. Rev Recent Clin Trials. 2010;5(1):14-27; DOI:10.2174/157488710790820544. Search in Google Scholar

Chakravarti A, Erkkinen MG, Nestler U, Stupp R, Mehta M, Aldape K, Gilbert MR, Black PML, Loeffler JS. Temozolomide-mediated radiation enhancement in glioblastoma: A report on underlying mechanisms. Clinical Cancer Research. 2006;12(15):4738-46; DOI:10.1158/1078-0432.CCR-06-0596. Search in Google Scholar

Rivera AL, Pelloski CE, Gilbert MR, Colman H, De La Cruz C, Sulman EP, Bekele BN, Aldape KD. MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol. 2010;12(2):116-21; DOI:10.1093/neuonc/nop020. Search in Google Scholar

Chen W, Silverman DH, Delaloye S, Czernin J, Kamdar N, Pope W, Satyamurthy N, Schiepers C, Cloughesy T. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med. 2006;47(6):904-11. Search in Google Scholar

Laack NN, Pafundi D, Anderson SK, Kaufmann T, Lowe V, Hunt C, Vogen D, Yan E, Sarkaria J, Brown P, Kizilbash S, Uhm J, Ruff M, Zakhary M, Zhang Y, Seaberg M, Wan Chan Tseung HS, Kabat B, Kemp B, Brinkmann D. Initial results of a phase 2 trial of 18F-DOPA PET-guided dose-escalated radiation therapy for glioblastoma. Int J Radiat Oncol Biol Phys. 2021;110(5):1383-95; DOI:10.1016/j.ijrobp.2021.03.032. Search in Google Scholar

Kirson ED, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y, Schatzberger R, Palti Y. Disruption of cancer cell replication by alternating electric fields. Cancer Res. 2004;64(9):3288-95; DOI:10.1158/0008-5472.can-04-0083. Search in Google Scholar

Gera N, Yang A, Holtzman TS, Lee SX, Wong ET, Swanson KD. Tumor treating fields perturb the localization of septins and cause aberrant mitotic exit. PLoS One. 2015;10(5):e0125269; DOI:10.1371/journal. pone.0125269. Search in Google Scholar

Kim EH, Kim YJ, Song HS, Jeong YK, Lee JY, Sung J, Yoo SH, Yoon M. Biological effect of an alternating electric field on cell proliferation and synergistic antimitotic effect in combination with ionizing radiation. Oncotarget. 2016;7(38):622267-79; DOI:10.18632/oncotarget.11407. Search in Google Scholar

Mrugala MM, Engelhard HH, Dinh Tran D, Kew Y, Cavaliere R, Villano JL, Ann enelie Bota D, Rudnick J, Love Sumrall A, Zhu JJ, Butowski N. Clinical practice experience with NovoTTF-100ATM system for glioblastoma: the patient registry dataset (PRiDe). Semin Oncol. 2014;41(Suppl 6):S4-S13; DOI:10.1053/j.seminoncol.2014.09.010. Search in Google Scholar

Toms SA, Kim CY, Nicholas G, Ram Z. Increased compliance with tumor treating fields therapy is prognostic for improved survival in the treatment of glioblastoma: a subgroup analysis of the EF-14 phase III trial. J Neurooncol. 2019;141(2):467-73; DOI:10.1007/s11060-018-03057-z. Search in Google Scholar

Liu S, Shi W, Zhao Q, Zheng Z, Liu Z, Meng L, Dong L, Jiang X. Progress and prospect in tumor treating fields treatment of glioblastoma. Biomed Pharmacother. 2021;141:111810; DOI:10.1016/j. biopha.2021.111810. Search in Google Scholar

Schmittling RJ, Archer GE, Mitchell DA, Heimberger A, Pegram C, Herndon JE, Friedman HS, Bigner DD, Sampson JH. Detection of humoral response in patients with glioblastoma receiving EGFRvIII-KLH vaccines. J Immunol Methods. 2008;339(1):74-81; DOI:10.1016/j. jim.2008.08.004. Search in Google Scholar

Padfield E, Ellis HP, Kurian KM. Current therapeutic advances targeting EGFR and EGFRvIII in glioblastoma. Front Oncol. 2015;5:5; DOI:10.3389/fonc.2015.00005. Search in Google Scholar

Yu MW, Quail DF. Immunotherapy for glioblastoma: current progress and challenge. Front Immunol. 2021;12:676301; DOI:10.3389/fimmu.2021.676301. Search in Google Scholar

Schuster J, Lai RK, Recht LD, Reardon DA, Paleologos NA, Groves MD, Mrugala MM, Jensen R, Baehring JM, Sloan A, Archer GE, Bigner DD, Cruickshank S, Green JA, Keler T, Davis TA, Heimberger AB, Sampson JH. A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: The ACT III study. Neuro Oncol. 2015;17(6):854-61; DOI:10.1093/neuonc/nou348. Search in Google Scholar

Broekman MLD, Nieland L, Hoeben RC. Virotherapy: The next addition to the standard of care for glioblastoma? Cancer Cell. 2022;40(10):1089-91; DOI:10.1016/j.ccell.2022.09.003. Search in Google Scholar

Brown CE, Warden CD, Starr R, Deng X, Badie B, Yuan YC, Forman SJ, Barish ME. Glioma IL13Rα2 is associated with mesenchymal signature gene expression and poor patient prognosis. PLoS One. 2013;8(10):e77769; DOI:10.1371/journal.pone.0077769. Search in Google Scholar

Patel MA, Kim JE, Ruzevick J, Li G, Lim M. The future of glioblastoma therapy: sSynergism of standard of care and immunotherapy. Cancers (Basel). 2014;6(4):1953-85; DOI:10.3390/cancers6041953. Search in Google Scholar

Tomaszewski W, Sanchez-Perez L, Gajewski TF, Sampson JH. Brain tumor microenvironment and host state: implications for immunotherapy. Clin Cancer Res. 2019;25(14):4202-10; DOI:10.1158/1078-0432.CCR-18-1627. Search in Google Scholar

Kadiyala P, Li D, Nunez FM, Altshuler D, Doherty R, Kuai R, Yu M, Kamran N, Edwards M, Moon JJ, Lowenstein PR, Castro MG, Schwendeman A. High-Density Lipoprotein-Mimicking Nanodiscs for Chemo-immunotherapy against Glioblastoma Multiforme. ACS Nano. 2019;13(2):1365-84; DOI:10.1021/acsnano.8b06842. Search in Google Scholar

Cho DY, Yang WK, Lee HC, Hsu DM, Lin HL, Lin SZ, Chen CC, Harn HJ, Liu CL, Lee WY, Ho LH. Adjuvant immunotherapy with whole-cell lysate dendritic cells vaccine for glioblastoma multiforme: a phase II clinical trial. World Neurosurg. 2012;77(5-6):736-44; DOI:10.1016/j. wneu.2011.08.020. Search in Google Scholar

Polivka J, Holubec L, Kubikova T, Priban V, Hes O, Pivovarcikova K, Treskova I. Advances in experimental targeted therapy and immunotherapy for patients with glioblastoma multiforme. Anticancer Res. 2017;37(1):21-33; DOI:10.21873/anticanres.11285. Search in Google Scholar

Slika H, Karimov Z, Alimonti P, Abou-Mrad T, De Fazio E, Alomari S, Tyler B. Preclinical models and technologies in glioblastoma research: evolution, current state, and future avenues. Int J Mol Sci. 2023;24(22):16316; DOI:10.3390/ijms242216316. Search in Google Scholar

Liu P, Griffiths S, Veljanoski D, Vaughn-Beaucaire P, Speirs V, Brüning-Richardson A. Preclinical models of glioblastoma: limitations of current models and the promise of new developments. Expert Rev Mol Med. 2021;23:e20; DOI:10.1017/erm.2021.20. Search in Google Scholar

Xie Y, Bergström T, Jiang Y, Johansson P, Marinescu VD, Lindberg N, Segerman A, Wicher G, Niklasson M, Baskaran S, Sreedharan S, Everlien I, Kastemar M, Hermansson A, Elfineh L, Libard S, Holland EC, Hesselager G, Alafuzoff I, Westermark B, Nelander S, Forsberg-Nilsson K, Uhrbom L. The human glioblastoma cell culture resource: validated cell models representing all molecular subtypes. EBioMedicine. 2015;2(10):1351-63; DOI:10.1016/j.ebiom.2015.08.026. Search in Google Scholar

Kijima N, Kanemura Y. Mouse models of glioblastoma. In: De Vleeschouwer S, editor. Glioblastoma [Internet]. Brisbane (AU): Codon Publications; 2017 [cited 2024 Feb 8]. Chapter 7. Available from: 10.15586/codon.glioblastoma.2017.ch7. Search in Google Scholar

Pudelko L, Edwards S, Balan M, Nyqvist D, Al-Saadi J, Dittmer J, Almlöf I, Helleday T, Bräutigam L. An orthotopic glioblastoma animal model suitable for high-throughput screenings. Neuro Oncol. 2018;20:1475-84; DOI:10.1093/neuonc/noy071. Search in Google Scholar

Ruiz-Garcia H, Alvarado-Estrada K, Schiapparelli P, Quinones-Hinojosa A, Trifiletti DM. Engineering three-dimensional tumor models to study glioma cancer stem cells and tumor microenvironment. Front Cell Neurosci. 2020;14:558381; DOI:10.3389/fncel.2020.558381. Search in Google Scholar

Krieger TG, Tirier SM, Park J, Jechow K, Eisemann T, Peterziel H, Angel P, Eils R, Conrad C. Modeling glioblastoma invasion using human brain organoids and single-cell transcriptomics. Neuro Oncol. 2020;22:1138-49; DOI:10.1093/neuonc/noaa091. Search in Google Scholar

Linkous A, Balamatsias D, Sn uderl M, Edwards L, Miyaguchi K, Milner T, Reich B, Cohen-Gould L, Storaska A, Nakayama Y, Schenkein E, Singhania R, Cirigliano S, Magdeldin T, Lin Y, Nanjangud G, Chadalavada K, Pisapia D, Liston C, Fine HA. Modeling patient-derived glioblastoma with cerebral organoids. Cell Rep. 2019;26:3203-11.e5; DOI: 10.1016/j.celrep.2019.02.063. Search in Google Scholar

Tang M, Rich JN, Chen S. Biomaterials and 3D Bioprinting Strategies to Model Glioblastoma and the Blood-Brain Barrier. Advanced Materials. 2021;33(5):e2004776; DOI:10.1002/adma.202004776. Search in Google Scholar

Tang M, Tiwari SK, Agrawal K, Tan M, Dang J, Tam T, Tian J, Wan X, Schimelman J, You S, Xia Q, Rana TM, Chen S. Rapid 3D bioprinting of glioblastoma model mimicking native biophysical heterogeneity. Small. 2021;17(15):e2006050; DOI:10.1002/smll.202006050. Search in Google Scholar

Logun M, Zhao W, Mao L, Karumbaiah L. Microfluidics in Malignant Glioma Research and Precision Medicine. Adv Biosyst. 2018;2(5):1700221; DOI:10.1002/adbi.201700221. Search in Google Scholar

Mohiuddin E, Wakimoto H. Extracellular matrix in glioblastoma: opportunities for emerging therapeutic approaches. Am J Cancer Res. 2021;11(8):3742-54. Search in Google Scholar

Gómez-Oliva R, Domínguez-García S, Carrascal L, Abalos-Martínez J, Pardillo-Díaz R, Verástegui C, Castro C, Nunez-Abades P, Geribaldi-Doldán N. Evolution of experimental models in the study of glioblastoma: toward finding efficient treatments. Front Oncol. 2021;10:614295; DOI:10.3389/fonc.2020.614295. Search in Google Scholar

Śledzińska P, Bebyn MG, Furtak J, Kowalewski J, Lewandowska MA. Prognostic and predictive biomarkers in gliomas. Int J Mol Sci. 2021;22(19):10373; DOI:10.3390/ijms221910373. Search in Google Scholar

Silantyev AS, Falzone L, Libra M, Gurina OI, Kardashova KS, Nikolouzakis TK, Nosyrev AE, Sutton CW, Panayioti M, Tsatsakis A. Current and future trends on diagnosis and prognosis of glioblastoma: from molecular biology to proteomics. Cells. 2019;8(8):863; DOI:10.3390/cells8080863. Search in Google Scholar

Gatto L, Franceschi E, Di Nunn o V, Tosoni A, Lodi R, Brandes AA. Liquid biopsy in glioblastoma management: from current research to future perspectives. Oncologist. 2021;26:865-78; DOI:10.1002/onco.13858. Search in Google Scholar

Di L, Eichberg DG, Huang K, Shah AH, Jamshidi AM, Luther EM, Lu VM, Komotar RJ, Ivan ME, Gultekin SH. Stimulated Raman histology for rapid intraoperative diagnosis of gliomas. World Neurosurg. 2021;150:e135-43; DOI:10.1016/j.wneu.2021.02.122. Search in Google Scholar

Zhang Y, Yu H, Li Y, Xu H, Yang L, Shan P, Du Y, Yan X, Chen X. Raman spectroscopy: a prospective intraoperative visualization technique for gliomas. Front Oncol. 2023;12:1086643; DOI:10.3389/fonc.2022.1086643. Search in Google Scholar

Riva M, Sciortino T, Secoli R, D’amico E, Moccia S, Fernandes B, Nibali MC, Gay L, Rossi M, De Momi E, Bello L. Glioma biopsies classification using Raman spectroscopy and machine learning models on fresh tissue samples. Cancers (Basel). 2021;13:1-14; DOI:10.3390/cancers13051073. Search in Google Scholar

Desroches J, Jermyn M, Pinto M, Picot F, Tremblay M-A, Obaid S, Marple E, Urmey K, Trudel D, Soulez G, Guiot M-C, Wilson BC, Petrecca K, Leblond F. A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy. Sci Rep. 2018;8:1792; DOI:10.1038/s41598-018-20233-3. Search in Google Scholar

Wu J, Al-Zahrani A, Beylerli O, Sufianov R, Talybov R, Meshcheryakova S, Sufianova G, Gareev I, Sufianov A. Circulating miRNAs as diagnostic and prognostic biomarkers in high-grade gliomas. Front Oncol. 2022;12:898537; DOI:10.3389/fonc.2022.898537. Search in Google Scholar

Wu X, Yang L, Wang J, Hao Y, Wang C, Lu Z. The involvement of long non-coding RNAs in glioma: from early detection to immunotherapy. Front Immunol. 2022;13:897754; DOI:10.3389/fimmu.2022.897754. Search in Google Scholar

Chen X-D, Zhu M-X, Wang S-J. Expression of long non-coding RNA MAGI2‑AS3 in human gliomas and its prognostic significance. Eur Rev Med Pharmacol Sci. 2019;23:3455-60; DOI:10.26355/eurrev_201904_17710. Search in Google Scholar

Shang F, Du S-W, Ma X-L. Up‑regulation of lncRNA PXN-AS1-L is associated with unfavorable prognosis in patients suffering from glioma. Eur Rev Med Pharmacol Sci. 2019;23:8950-5; DOI:10.26355/eurrev_201910_19293. Search in Google Scholar

Zhou M, Zhang Z, Zhao H, Bao S, Cheng L, Sun J. An immune-related six-lncRNA signature to improve prognosis prediction of glioblastoma multiforme. Mol Neurobiol. 2018;55(5):3684-97; DOI10.1007/s12035-017-0572-9. Search in Google Scholar

Musatova OE, Rubtsov YP. Effects of glioblastoma-derived extracellular vesicles on the functions of immune cells. Front Cell Dev Biol. 2023;11:1060000; DOI:10.3389/fcell.2023.1060000. Search in Google Scholar

Verger A, Langen KJ. PET Imaging in glioblastoma: use in clinical practice. In: De Vleeschouwer S, editor. glioblastoma [Internet]. Brisbane (AU): Codon Publications; 2017 [cited 2024 Feb 10]. Chapter 9. Available from: 10.15586/codon.glioblastoma.2017.ch9. Search in Google Scholar

Filss CP, Galldiks N, Stoffels G, Sabel M, Wittsack HJ, Turowski B, Antoch G, Zhang K, Fink GR, Coenen HH, Shah NJ, Herzog H, Langen KJ. Comparison of 18F-FET PET and perfusion-weighted MR imaging: a PET/MR imaging hybrid study in patients with brain tumors. J Nucl Med. 2014;55(4):540-5; DOI:10.2967/jnumed.113.129007. Search in Google Scholar

Galldiks N, Dunkl V, Stoffels G, Hutterer M, Rapp M, Sabel M, Reifenberger G, Kebir S, Dorn F, Blau T, Herrlinger U, Hau P, Ruge MI, Kocher M, Goldbrunn er R, Fink GR, Drzezga A, Schmidt M, Langen K-J. Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-l-tyrosine PET. Eur J Nucl Med Mol Imaging. 2015;42:685-95; DOI:10.1007/s00259-014-2959-4. Search in Google Scholar

Puranik AD, Boon M, Purandare N, Rangarajan V, Gupta T, Moiyadi A, Shetty P, Sridhar E, Agrawal A, Dev I, Shah S. Utility of FET-PET in detecting high-grade gliomas presenting with equivocal MR imaging features. World J Nucl Med. 2019;18:266-72; DOI:10.4103/wjnm. WJNM_89_18. Search in Google Scholar

Kranz M, Bergmann R, Kniess T, Belter B, Neuber C, Cai Z, Deng G, Fischer S, Zhou J, Huang Y, Brust P, Deuther-Conrad W, Pietzsch J. Bridging from brain to tumor imaging: (S)-(−)- and (R)-(+)-[18F]fluspidine for investigation of sigma-1 receptors in tumor-bearing mice. Molecules. 2018;23:702; DOI:10.3390/molecules23030702. Search in Google Scholar

Drake LR, Hillmer AT, Cai Z. Approaches to PET imaging of glioblastoma. Molecules. 2020;25(3):568; DOI:10.3390/molecules25030568. Search in Google Scholar

Chitneni SK, Reitman ZJ, Spicehandler R, Gooden DM, Yan H, Zalutsky MR. Synthesis and evaluation of radiolabeled AGI-5198 analogues as candidate radiotracers for imaging mutant IDH1 expression in tumors. Bioorg Med Chem Lett. 2018;28:694-9; DOI:10.1016/j. bmcl.2018.01.015. Search in Google Scholar

Roberts JW, Powlovich L, Sheybani N, LeBlang S. Focused ultrasound for the treatment of glioblastoma. J Neurooncol. 2022;157:237-47; DOI:10.1007/s11060-022-03974-0. Search in Google Scholar

Bunevicius A, McDann old NJ, Golby AJ. Focused ultrasound strategies for brain tumor therapy. Oper Neurosurg. 2020;19:9-18; DOI:10.1093/ons/opz374. Search in Google Scholar

Meng Y, Pople CB, Suppiah S, Llinas M, Huang Y, Sahgal A, Perry J, Keith J, Davidson B, Hamani C, Amemiya Y, Seth A, Leong H, Heyn CC, Aubert I, Hynynen K, Lipsman N. MR-guided focused ultrasound liquid biopsy enriches circulating biomarkers in patients with brain tumors. Neuro Oncol. 2021;23:1789-97; DOI:10.1093/neuonc/noab057. Search in Google Scholar

Nance E, Timbie K, Miller GW, Song J, Louttit C, Klibanov AL, Shih T-Y, Swaminathan G, Tamargo RJ, Woodworth GF, Hanes J, Price RJ. Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood − brain barrier using MRI-guided focused ultrasound. J Control Release. 2014;189:123-32; DOI:10.1016/j.jconrel.2014.06.031. Search in Google Scholar

Hersh AM, Bhimreddy M, Weber-Levine C, Jiang K, Alomari S, Theodore N, Manbachi A, Tyler BM. Applications of focused ultrasound for the treatment of glioblastoma: a new frontier. Cancers (Basel). 2022;14:4920; DOI:10.3390/cancers14194920. Search in Google Scholar

Bunevicius A, Pikis S, Padilla F, Prada F, Sheehan J. Sonodynamic therapy for gliomas. J Neurooncol. 2022;156:1-10; DOI:10.1007/s11060-021-03807-6. Search in Google Scholar

Iturrioz-Rodríguez N, Bertorelli R, Ciofani G. Lipid‐based nanocarriers for the treatment of glioblastoma. Adv Nanobiomed Res. 2021;1(2):2000054; DOI:10.1002/anbr.202000054. Search in Google Scholar

Lin Q, Mao K-L, Tian F-R, Yang J-J, Chen P-P, Xu J, Fan Z-L, Zhao Y-P, Li W-F, Zheng L, Zhao Y-Z, Lu C-T. Brain tumor-targeted delivery and therapy by focused ultrasound introduced doxorubicin-loaded cationic liposomes. Cancer Chemother Pharmacol. 2016;77:269-80; DOI:10.1007/s00280-015-2926-1. Search in Google Scholar

Seo S, Kim EH, Chang W-S, Lee W-S, Kim K-H, Kim J-K. Enhanced proton treatment with a LDLR-ligand peptide-conjugated gold nanoparticles targeting the tumor microenvironment in an infiltrative brain tumor model. Am J Cancer Res. 2022;12(1):198-209. Search in Google Scholar

Ismail M, Yang W, Li Y, Chai T, Zhang D, Du Q, Muhammad P, Hanif S, Zheng M, Shi B. Targeted liposomes for combined delivery of artesunate and temozolomide to resistant glioblastoma. Biomaterials. 2022;287:121608; DOI:10.1016/j.biomaterials.2022.121608. Search in Google Scholar

Kim EL, Sorokin M, Kantelhardt SR, Kalasauskas D, Sprang B, Fauss J, Ringel F, Garazha A, Albert E, Gaifullin N, Hartmann C, Naumann N, Bikar S-E, Giese A, Buzdin A. Intratumoral heterogeneity and longitudinal changes in gene expression predict differential drug sensitivity in newly diagnosed and recurrent glioblastoma. Cancers (Basel). 2020;12:520; DOI:10.3390/cancers12020520. Search in Google Scholar

Ladbury C, Amini A, Schwer A, Liu A, Williams T, Lee P. Clinical Applications of magnetic resonance-guided radiotherapy: a narrative review. Cancers (Basel). 2023;15:2916; DOI:10.3390/cancers15112916. Search in Google Scholar

Maziero D, Straza MW, Ford JC, Bovi JA, Diwanji T, Stoyanova R, Paulson ES, Mellon EA. MR-guided radiotherapy for brain and spine tumors. Front Oncol. 2021;11:626100; DOI:10.3389/fonc.2021.626100. Search in Google Scholar

Ellingson BM, Malkin MG, Rand SD, Conn elly JM, Quinsey C, LaViolette PS, Bedekar DP, Schmainda KM. Validation of functional diffusion maps (fDMs) as a biomarker for human glioma cellularity. J Magn Reson Imaging. 2010;31:538-48; DOI:10.1002/jmri.22068. Search in Google Scholar

Hattingen E, Müller A, Jurcoane A, Mädler B, Ditter P, Schild H, Herrlinger U, Glas M, Kebir S. Value of quantitative magnetic resonance imaging T1-relaxometry in predicting contrast-enhancement in glioblastoma patients. Oncotarget. 2017;8:53542-51; DOI:10.18632/oncotarget.18612. Search in Google Scholar

Trejo-Solís C, Serrano-Garcia N, Escamilla-Ramírez Á, Castillo-Rodríguez R, Jimenez-Farfan D, Palencia G, Calvillo M, Alvarez-Lemus M, Flores-Nájera A, Cruz-Salgado A, Sotelo J. Autophagic and apoptotic pathways as targets for chemotherapy in glioblastoma. Int J Mol Sci. 2018;19:3773; DOI:10.3390/ijms19123773. Search in Google Scholar

Han W, Yu F, Cao J, Dong B, Guan W, Shi J. Valproic acid enhanced apoptosis by promoting autophagy via Akt/mTOR signaling in glioma. Cell Transplant. 2020;29:096368972098187; DOI:10.1177/0963689720981878. Search in Google Scholar

Yuan Y, Xiang W, Qing M, Yanhui L, Jiewen L, Yunhe M. Survival analysis for valproic acid use in adult glioblastoma multiforme: a meta-analysis of individual patient data and a systematic review. Seizure. 2014;23:830-5; DOI:10.1016/j.seizure.2014.06.015. Search in Google Scholar

Osuka S, Takano S, Watanabe S, Ishikawa E, Yamamoto T, Matsumura A. Valproic acid inhibits angiogenesis in vitro and glioma angiogenesis in vivo in the brain. Neurol Med Chir (Tokyo). 2012;52(4):186-93; DOI:10.2176/nmc.52.186. Search in Google Scholar

Shaw P, Kumar N, Privat-Maldonado A, Smits E, Bogaerts A. Cold atmospheric plasma increases temozolomide sensitivity of three-dimensional glioblastoma spheroids via oxidative stress-mediated DNA damage. Cancers (Basel). 2021;13:1780; DOI:10.3390/cancers13081780. Search in Google Scholar

Pinheiro Lopes B, O’Neill L, Bourke P, Boehm D. Combined effect of plasma-activated water and topotecan in glioblastoma cells. Cancers (Basel). 2023;15:4858; DOI:10.3390/cancers15194858. Search in Google Scholar

Gjika E, Pal-Ghosh S, Kirschner ME, Lin L, Sherman JH, Stepp MA, Keidar M. Combination therapy of cold atmospheric plasma (CAP) with temozolomide in the treatment of U87MG glioblastoma cells. Sci Rep. 2020;10:16495; DOI:10.1038/s41598-020-73457-7. Search in Google Scholar

eISSN:
2544-3577
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Biochemie