Zitieren

1. Deal T, Kountakis S. Significance of nasal polyps in chronic rhinosinusitis: symptoms and surgical outcomes. Laryngoscope. 2004; 114: 1932-5.10.1097/01.mlg.0000147922.12228.1fSearch in Google Scholar

2. Wynn R, Har-El G. Recurrence rates after endoscopic sinus surgery for massive sinus polyposis. Laryngoscope. 2004; 114:811-3.10.1097/00005537-200405000-00004Search in Google Scholar

3. Chan KO, Huang ZH, Wang DY. Acoustic rhinometric assessment of nasal obstruction after treatment with fluticasone propionate in patients with perennial rhinitis. Auris Nasus Larynx. 2003; 30: 379-83.10.1016/S0385-8146(03)00085-314656563Open DOISearch in Google Scholar

4. Sipila J, Suonpaa J. A prospective study using rhinomanometry and patient clinical satisfaction to determine if objective measurements of nasal airway resistance can improve the quality of septoplasty. Eur Arch Otorhinolaryngol. 1997; 254, 387-90.10.1007/BF01642556Search in Google Scholar

5. Ishizuka T, Ichimura K. Measurements of the nasal volume and the cross sectional areas in adult by acoustic rhinometry. Jpn J Rhinology. 1997; 36:141-4.10.7248/jjrhi1982.36.2_141Open DOISearch in Google Scholar

6. Wen J, Inthavong K, Tu J, Wang S. Numerical simulations for detailed airflow dynamics in a human nasal cavity. Respirat Physiol Neurobiol. 2008; 161: 125-35.10.1016/j.resp.2008.01.01218378196Search in Google Scholar

7. Segal RA, Kepler GM, Kimbell JS. Effects of differences in nasal anatomy on airflow distribution: a comparison of four individuals at rest. Ann Biomed Eng. 2008; 36: 1870-82.10.1007/s10439-008-9556-218777212Open DOISearch in Google Scholar

8. Mylavarapu G, Murugappan S, Mihaescu M, Kalra M, Khosla S, Gutmark E. Validation of computational fluid dynamics methodology used for human upper airway flow simulations. J Biomech. 2009; 42:1553-9.10.1016/j.jbiomech.2009.03.03519501360Search in Google Scholar

9. Cheng YS. Yeh HC, Guilmette RA, Simpson SQ, Cheng KH, Swift DL. Nasal deposition of ultrafine particles in human volunteers and its relationship to airway geometry. Aerosol Sci Technol. 1996; 25: 274-91.10.1080/02786829608965396Open DOISearch in Google Scholar

10. Weinhold I, Mlynski G. Numerical simulation of airflow in the human nose. Eur Arch Otorhinolaryngol. 2004; 261:452-5.10.1007/s00405-003-0675-y14652769Search in Google Scholar

11. Garcia GJM, Bailie N, Martins DA, Kimbell JS. Atrophic rhinitis: a CFD study of airconditioning in the nasal cavity. J Appl Physiol. 2007; 103:1082-92.10.1152/japplphysiol.01118.200617569762Search in Google Scholar

12. Xiong GX, Zhan JM, Jiang HY, Li JF, Rong LW, Xu G. Computational fluid dynamics simulation of airflow in the normal nasal cavity and paranasal sinuses. Am J Rhinol. 2008; 22:477-82.10.2500/ajr.2008.22.321118954506Open DOISearch in Google Scholar

13. Cole P. Nasal airflow resistance: a survey of 2500 assessments. Am J Rhinol. 1997; 11:415-20.10.2500/1050658977809149019438053Search in Google Scholar

14. Hilberg O, Jackson AC, Swift DL, Pedersen OF. Acoustic rhinometry: evaluation of the nasal cavity by acoustic rhinometry. J Appl Physiol. 1989; 66: 295-303.10.1152/jappl.1989.66.1.2952917933Open DOISearch in Google Scholar

15. Austin CE, Foreman JC. Acoustic rhinometry compared with posterior rhinomanometry in the measurement of histamine- and bradykinin-induced changes in nasal airway patency. Br J Clin Pharmac. 1994; 37: 33-7.10.1111/j.1365-2125.1994.tb04235.x13647068148216Search in Google Scholar

eISSN:
1875-855X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Gesundheitsfachberufe, Vorklinische Medizin, Grundlagenmedizin, andere, Klinische Medizin