Zitieren

1. CHENG, C., et al. 2005. Treatment of spent metalworking fluids. Water Res., Vol. 39, pp. 4051–4063.Search in Google Scholar

2. KEMP, C., P., HILL, I. 2004. Health and safety aspects in the live music industry, p. 298.Search in Google Scholar

3. PARK, D. 2012. The Occupational Exposure Limit for Fluid Aerosol Generated in Metalworking Operations: Limitations and Recommendations. Saf. Health Work, 3(1), p. 10.Search in Google Scholar

4. SCHWARZ, M. et al. 2015. Environmental and health aspects of metalworking fluid use. Polish J. Environ. Stud., 24(1), pp. 37–45.Search in Google Scholar

5. De GROOTE, M., A., HUITT, G. 2012. Infections due to rapidly growing mycobacteria. Clin. Infect. Dis., No. 42, pp. 1756–1763.Search in Google Scholar

6. FRIESEN, M., C., et al. 2012. Metalworking fluid exposure and cancer risk in a retrospective cohort of female autoworkers. Cancer Causes Control, 23(7), pp. 1075–82.10.1007/s10552-012-9976-z337011122562220Open DOISearch in Google Scholar

7. van WENDEL, B., et al., 2005. An assessment of dermal exposure to semi-synthetic metal working fluids by different methods to group workers for an epidemiological study on dermatitis. Occup. Environ. Med., 62(9), pp. 633–41.10.1136/oem.2004.015396174108116109820Open DOISearch in Google Scholar

8. LILLIENBERG, L., et al. 2010. Respiratory symptoms and exposure-response relations in workers exposed to metalworking fluid aerosols. Ann. Occup. Hyg., 54(4), pp. 403–11.Search in Google Scholar

9. SAHA, R., DONOFRIO, R., S. 2012. The microbiology of metalworking fluids. Appl. Microbiol. Biotechnol., 94(5), pp. 1119–1130.10.1007/s00253-012-4055-722543351Open DOISearch in Google Scholar

10. TRAFNY, E. 2013. Microorganisms in metalworking fluids: current issues in research and management. Int. J. Occup. Med. Environ. Health, 26(1), pp. 4–15.Search in Google Scholar

11. DILGER, S., et al. 2005. Bacterial contamination of preserved and non-preserved metal working fluids. Int. J. Hyg. Environ. Health, 208(6), pp. 467–76.Search in Google Scholar

12. LODDERS, N., KÄMPFER, P. 2012. A combined cultivation and cultivation-independent approach shows high bacterial diversity in water-miscible metalworking fluids. Syst. Appl. Microbiol., 35(4), pp. 246–252.10.1016/j.syapm.2012.03.00622609341Open DOISearch in Google Scholar

13. RUDNICK, L., R. 2009. Lubricant Additives Chemistry and Applications. CRC Press Taylor & Francis Group LCC, 209 p.10.1201/9781420059656Search in Google Scholar

14. TRAFNY, E. A. et al. 2015. Microbial contamination and biofilms on machines of metal industry using metalworking fluids with or without biocides. Int. Biodeterior. Biodegradation, vol. 99, pp. 31–38.Search in Google Scholar

15. HUIZING, I., T., et al. 2011. Evaluation Manual for the Authorisation of plant protection products and biocides EU part Biocides Chapter 2 Physical and chemical properties Authors.Search in Google Scholar

16. BAKALOVA, S. 2008. Microbial toxicity of ethanolamines. Biotechnol. Biotechnol. Equip., 22(2), pp. 716–720.10.1080/13102818.2008.10817540Open DOISearch in Google Scholar

17. LOTIERZO, A. et al. 2016. Insight into the role of amines in Metal Working Fluids. Corros. Sci..10.1016/j.corsci.2016.04.028Search in Google Scholar

18. Metal Working Fluids Recommendation for Chronic Inhalation Studies National Institute for Occupational Safety and Health. 2001. p. 90.Search in Google Scholar

19. MADAN, V., BECK, M., H. 2006. Occupational allergic contact dermatitis from N,N-methylene-bis-5-methyl-oxazolidine in coolant oils. Contact Dermatitis, 55(1), pp. 39–41.Search in Google Scholar

20. “ECHA - European chemicals agency.” [Online]. Available: https://echa.europa.eu/home.Search in Google Scholar

21. GRAINGE, C., et al. 2013. Case series reporting the effectiveness of mycophenolate mofetil in treatmentresistant asthma. Eur. Respir. J., 42(4), pp. 1134–1137.10.1183/09031936.0002641324081762Open DOISearch in Google Scholar

22. Harmonised classification and labeling proposal for N,N’-methylene bismorpholine (MBM) - Lubrizol comments for the public consultation. 2016, pp. 1–26.Search in Google Scholar

23. OI, M. 2011. Emission scenario document on the use of metalworking fluids OECD Environment, Health and Safety Publications Series on Emission Scenario Documents Number 28, ENV/JM/MONO(2011)18, 33(28), pp. 1–127.Search in Google Scholar

24. BRUTTO, P., E. 2013. Amines 101 for Metalworking Fluids. Tribol. Lubr. Technol., pp. 2–3.Search in Google Scholar

25. JAGADEVAN, S., et al. 2013. Treatment of waste metalworking fluid by a hybrid ozone-biological process. J. Hazard. Mater., Vol. 244–245, pp. 394–402.Search in Google Scholar

26. FROSCH, P., J., et al. 2006. Contact Dermatitis. Springer Science & Business Media.10.1007/3-540-31301-XSearch in Google Scholar

27. Boric Acid and Metalworking Fluids. 2007. pp. 1–2.Search in Google Scholar

28. ECHA (European Chemicals Agency), “Member state committee draft support document for identification of boric acid as a substance of very high concern because of its CMR properties,” SVHC Support Doc., 2010. Vol. 2, pp. 1–27.Search in Google Scholar

29. PATNAIK, P. 2007. A Comprehensive Guide to the Hazardous Properties of Chemical Substances, 3rd ed.10.1002/9780470134955Search in Google Scholar

30. AMRITA, M., et al. 2014. Evaluation of Cutting Fluid With Nanoinclusions. J. Nanotechnol. Eng. Med., 4(3), pp. 1-11.Search in Google Scholar

31. 2-aminoethanol. [on-line]. Available: https://echa.europa.eu/substance-information/-/substanceinfo/100.004.986Search in Google Scholar

eISSN:
1338-0532
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere