Uneingeschränkter Zugang

Influence of cooling mode in relation to casting and extrusion parameters on mechanical properties of AA6082


Zitieren

[1] Hägele, N., Sonsino, C.M. (2014): Structural durability design recommendations for forged automotive aluminium chassis components submitted to spectrum and environmental loadings by the example of a tension strut. International Journal of Fatigue, 69, pp. 63-70.10.1016/j.ijfatigue.2012.03.015Search in Google Scholar

[2] Mistakidis, E.S., De Matteis, G., Formisano, A. (2007): Low yield metal shear panels as an alternative for the seismic upgrading of concrete structures. Advances in Engineering Software, 38(9), pp. 626-636.10.1016/j.advengsoft.2006.08.043Search in Google Scholar

[3] Hirth, S.M., Marshall, G.J., Court, S.A., Lloyd, D.J. (2001): Effects of Si on the aging behaviour and formability of aluminium alloys based on AA6016. Materials Science and Engineering A, 319-321, pp. 452-456.10.1016/S0921-5093(01)00969-8Search in Google Scholar

[4] Garrett, R.P., Lin, J., Dean, T.A. (2005): An investigation of the effects of solution heat treatment on mechanical properties for AA 6xxx alloys: experimentation and modelling. International Journal of Plasticity, 21, pp. 1640-1657.10.1016/j.ijplas.2004.11.002Search in Google Scholar

[5] Zhang, L.Y., Jiang, Y.H., Ma, Z., Shan, S.F., Jia, Y.Z., Fan, C.Z., Wang, W.K. (2008): Effect of cooling rate on solidified microstructure and mechanical properties of aluminium-A356 alloy. Journal of Materials Processing Technology, 207, pp. 107-111.10.1016/j.jmatprotec.2007.12.059Search in Google Scholar

[6] Zhang, X.H., Su, G.C., Ju, C.W., Wang, W.C., Yan, W.L. (2010): Effect of modification treatment on the microstructure and mechanical properties of Al- 035%Mg-7.0%Si cast alloy. Materials & Design, 31(9), pp. 4408-4413.10.1016/j.matdes.2010.04.032Search in Google Scholar

[7] Lendvai, J. (1996): Precipitation and strengthening in aluminium alloys. Material Science Forum, 217-222, pp. 43-56. 10.4028/www.scientific.net/MSF.217-222.43Search in Google Scholar

[8] Wang, E.R., Hui, X.D., Wang, S.S., Zhao, Y.F., Chen, G.L. (2010): Improved mechanical properties in cast Al-Si alloys by combined alloying of Fe and Cu. Materials Science and Engineering A, 527(29-30), pp. 78-84.10.1016/j.msea.2010.08.058Search in Google Scholar

[9] Birol, Y. (2006): The effect of processing and Mn content on the T5 and T6 properties of AA6082 profiles. Journal of Materials Processing Technology, 173, pp. 84-91.10.1016/j.jmatprotec.2005.09.029Search in Google Scholar

[10] Mrowka-Nowotnik, G., Sieniawski, J. Nowotnik, A. (2005): Effect of heat treatment on tensile and fracture toughness properties of 6082 alloy. Journal of Materials Science and Engineering, 163, pp. 367-372.Search in Google Scholar

[11] Sjolander, E., Seifeddine, S. (2010): The heat treatment of Al-Si-Cu-Mg casting alloys. Journal of Materials Processing Technology, 210, pp. 1249-1259.10.1016/j.jmatprotec.2010.03.020Search in Google Scholar

[12] Mrowka-Nowotnik, G., Sieniawski, J. (2005): Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminium alloys. Journal of Materials Processing Technology, 163, pp. 367-372.10.1016/j.jmatprotec.2005.02.115Search in Google Scholar

[13] Liu, Y.L., Kang, S.B., Kim, H.W. (1999): The complex microstructures in as-cast Al-Mg-Si alloy, Materials Letters, 41, pp.167-272.10.1016/S0167-577X(99)00141-XSearch in Google Scholar

[14] Mrowka-Nowotnik, G., Sieniawski, J., Wierzbińska, M. (2007): Intermetallic phase particles in 6082 aluminium alloy. Archives of Materials Science and Engineering, 28(2), pp. 69-76.Search in Google Scholar

[15] Poletti, C., Wójcik, T., Sommitsch, C. (2012): Hot deformation of AA6082 Containing fine intermetallic particles. Metallurgical and Materials Transactions A, 44, pp. 1577-1586.10.1007/s11661-012-1487-8Search in Google Scholar

[16] Dobrzański, L.A., Sitek, W. (1999): Designing of the chemical composition of constructional alloy Steels. Journal of Materials Processing Technology, 89-90, pp. 467-472.10.1016/S0924-0136(99)00140-5Search in Google Scholar

[17] Guo, Z., Sha, W. (2004): Modelling the correlation between processing parameters and properties of maraging steels using artificial neural network. Computational Materials Science, 29, pp. 12-28.10.1016/S0927-0256(03)00092-2Search in Google Scholar

[18] Capdevila, C., Garcia-Mateo, C., Caballero, F.G., Garcıa de Andres, C. (2006): Neural network analysis of the influence of processing on strength and ductility of automotive low carbon sheet steels. Computational Materials Science, 38, pp. 192-201.10.1016/j.commatsci.2006.02.005Search in Google Scholar

[19] Terčelj, M., Fazarinc, M., Kugler, G., Peruš, I. (2013): Influence of the chemical composition and process parameters on the mechanical properties of an extruded aluminium alloy for highly loaded structural parts. Construction and Building Materials, 44, pp. 781-791.10.1016/j.conbuildmat.2013.03.052Search in Google Scholar

[20] Večko-Pirtovšek, T., Peruš, I., Kugler, G., Terčelj, M. (2009): Towards improved reliability of the analysis of factors influencing the properties on steel in industrial practice. ISIJ International, 49(3), pp. 395-401.10.2355/isijinternational.49.395Search in Google Scholar

[21] Peruš, I., Poljanšek, K., Fajfar, P. (2006): Flexural deformation capacity of rectangular RC columns determined by the CAE method. Earthquake Engineering & Structural Dynamics, 35(12), pp. 1453-1470.10.1002/eqe.584Search in Google Scholar

eISSN:
1854-7400
Sprache:
Englisch