Uneingeschränkter Zugang

Preparation and properties of cellulose membranes with graphene oxide addition


Zitieren

1. Ramamoorthy, S.K., Skrifvars, M. & Persson, A. (2015). A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers. Polym. Rev. 55, 107–162. DOI: 10.1080/15583724.2014.971124.10.1080/15583724.2014.971124Open DOISearch in Google Scholar

2. Yang, W., Fang, B. & Tang, Y.Y. (2016). Fast and Accurate Vanishing Point Detection and Its Application in Inverse Perspective Mapping of Structured Road IEEE Trans. Syst. Man, Cybern. Syst. 1–12. DIO: 10.1109/TSMC.2016.2616490.Search in Google Scholar

3. Wendler, F., Meister, F., Wawro, D., Wesolowska, E., Ciechańska, D., Saake, B., Puls, J., le Moigne, N. & Navard, P. (2010). Polysaccharide blend fibres formed from NaOH, N-methylmorpholine-N-oxide and 1-Ethyl-3-methylimidazolium acetate. Fibres Text. East. Eur. 79, 21–30.Search in Google Scholar

4. Pinkert, A., Marsh, K.N., Pang, S. & Staiger, M.P. (2009) Ionic liquids and their interaction with cellulose. Chem. Rev. 109, 6712–6728. DOI:10.1021/cr9001947.10.1021/cr9001947Open DOISearch in Google Scholar

5. Lindman, B., Karlström, G. & Stigsson L. (2010). On the mechanism of dissolution of cellulose. J. Mol. Liq. 156, 76–81. DOI: 10.1016/j.molliq.2010.04.016.10.1016/j.molliq.2010.04.016Open DOISearch in Google Scholar

6. Fink, H.P., Weigel, P., Purz, H.J. & Ganster, J. (2001). Structure formation of regenerated cellulose materials from NMMO-solutions. Prog. Polym. Sci. 26, 1473–1524. DOI: 10.1016/S0079-6700(01)00025-9.10.1016/S0079-6700(01)00025-9Open DOISearch in Google Scholar

7. Wang, S., Lu, A. & Zhang, L. (2016). Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 53, 169–206. DOI: 10.1016/j.progpolymsci.2015.07.003.10.1016/j.progpolymsci.2015.07.003Open DOISearch in Google Scholar

8. Swatloski, R.P., Holbrey, J.D. & Rogers, R.D. (2003). Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem. 5, 361. DOI: 10.1039/b304400a.10.1039/b304400aSearch in Google Scholar

9. Gathergood, N., Garcia, M.T. & Scammells, P.J. (2004). Biodegradable ionic liquids: Part I. Concept, preliminary targets and evaluation. Green Chem. 6, 166. DOI: 10.1039/b315270g.10.1039/b315270gOpen DOISearch in Google Scholar

10. Novoselov, N.P., Sashina, E.S., Kuz’mina, O.G. & Troshenkova, S.V. (2007). Ionic liquids and their use for the dissolution of natural polymers. Russ. J. Gen. Chem. 77, 1395–1405. DOI: 10.1134/S1070363207080178.10.1134/S1070363207080178Search in Google Scholar

11. Zhu, S., Wu, Y., Chen, Q., Yu, Z., Wang, C., Jin, S., Ding, Y. & Wu, G. (2006). Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem. 8, 325. DOI: 10.1039/b601395c.10.1039/b601395cSearch in Google Scholar

12. Rambo, C.R., Recouvreux, D.O.S., Carminatti, C.A., Pitlovanciv, A.K., Antônio, R.V. & Porto, L.M. (2008). Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mater. Sci. Eng. C. 28, 549–554. DOI: 10.1016/j.msec.2007.11.011.10.1016/j.msec.2007.11.011Open DOISearch in Google Scholar

13. Kuo, Y.N. & Hong, J. (2005). A new method for cellulose membrane fabrication and the determination of its characteristics. J. Coll. Inter. Sci. 285, 232–238. DOI: 10.1016/j.jcis.2004.10.043.10.1016/j.jcis.2004.10.04315797418Open DOISearch in Google Scholar

14. Xiao, W., Yin, W., Xia, S. & Ma, P. (2012). The study of factors affecting the enzymatic hydrolysis of cellulose after ionic liquid pretreatment. Carbohydr. Polym. 87, 2019–2023. DOI: 10.1016/j.carbpol.2011.10.012.10.1016/j.carbpol.2011.10.012Open DOISearch in Google Scholar

15. Zhao, H., Jones, C.L., Baker, G.A., Xia, S., Olubajo, O. & Person, V.N. (2009). Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J. Biotechnol. 139, 47–54. DOI: 10.1016/j.jbiotec.2008.08.009.10.1016/j.jbiotec.2008.08.00918822323Open DOISearch in Google Scholar

16. Ślusarczyk, C., Fryczkowska, B., Sieradzka, M. & Janicki, J. (2016). Small-angle X-ray scattering studies of pore structure in cellulose membranes. Acta Phys. Pol. A. 229–232. DOI: 10.12693/APhysPolA.129.229.10.12693/APhysPolA.129.229Open DOISearch in Google Scholar

17. Östlund, Å., Idström, A., Olsson, C., Larsson, P.T. & Nordstierna, L. (2013). Modification of crystallinity and pore size distribution in coagulated cellulose films. Cellulose 20 1657–1667. DOI: 10.1007/s10570-013-9982-7.10.1007/s10570-013-9982-7Open DOISearch in Google Scholar

18. Fryczkowski, R., Gorczowska, M., Ślusarczyk, C., Fryczkowska, B. & Janicki, J. (2013). The possibility of obtaining graphene/polymer composites from graphene oxide by a one step process. Compos. Sci. Technol. 80, 87–92. DOI: 10.1016/j.compscitech.2013.03.012.10.1016/j.compscitech.2013.03.012Open DOISearch in Google Scholar

19. Guerrero-Contreras, J. & Caballero-Briones, F. (2015). Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater. Chem. Phys. 153, 209–220. DOI: 10.1016/j.matchemphys.2015.01.005.10.1016/j.matchemphys.2015.01.005Open DOISearch in Google Scholar

20. Yoon, K.Y., An, S.J., Chen, Y., Lee, J.H., Bryant, S.L., Ruoff, R.S., Huh, C. & Johnston, K.P. (2013). Graphene oxide nanoplatelet dispersions in concentrated NaCl and stabilization of oil/water emulsions. J. Coll. Inter. Sci. 403, 1–6. DOI: 10.1016/j.jcis.2013.03.012.10.1016/j.jcis.2013.03.01223683958Open DOISearch in Google Scholar

21. Texter, J. (2014). Graphene dispersions. Curr. Opin. Coll. Inter. Sci. 19, 163–174. DOI: 10.1016/j.cocis.2014.04.004.10.1016/j.cocis.2014.04.004Open DOISearch in Google Scholar

22. Parades, J.I., Villar-Rodil, S., Martínez-Alonso, A. & Tascón, J.M.D. (2008). Graphene oxide dispersions in organic solvents. Langmuir 24, 10560–10564. DOI: 10.1021/la801744a.10.1021/la801744a18759411Open DOISearch in Google Scholar

23. Sitko, R., Zawisza, B. & Malicka, E. (2013). Graphene as a new sorbent in analytical chemistry. TrAC Trends Anal. Chem. 51, 33–43. DOI: 10.1016/j.trac.2013.05.011.10.1016/j.trac.2013.05.011Open DOISearch in Google Scholar

24. Musico, Y.L.F., Santos, C.M., Dalida, M.L.P. & Rodrigues, D.F. (2014). Surface Modification of Membrane Filters Using Graphene and Graphene Oxide-Based Nanomaterials for Bacterial Inactivation and Removal. ACS Sustain. Chem. Eng. 2, 1559–1565. DOI: 10.1021/sc500044p.10.1021/sc500044pOpen DOISearch in Google Scholar

25. Goh, K., Setiawan, L., Wei, L. Jiang, W., Wang, R. & Chen, Y. (2013). Fabrication of novel functionalized multi-walled carbon nanotube immobilized hollow fiber membranes for enhanced performance in forward osmosis process. J. Memb. Sci. 446, 244–254. DOI: 10.1016/j.memsci.2013.06.022.10.1016/j.memsci.2013.06.022Open DOISearch in Google Scholar

26. Das, R., Ali, M.E., Hamid, S.B.A., Ramakrishna, S., Chowdhury, Z.Z. (2014). Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination 336, 97–109. DOI: 10.1016/j.desal.2013.12.026.10.1016/j.desal.2013.12.026Open DOISearch in Google Scholar

27. Hinds, B.J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V. & Bachas, L.G. (2004). Aligned multiwalled carbon nanotube membranes. Science. 303, 62–65. DOI: 10.1126/science.1092048.10.1126/.1092048Open DOISearch in Google Scholar

28. Celik, E., Park, H., Choi, H. & Choi, H. (2011). Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res. 45, 274–282. DOI: 10.1016/j.watres.2010.07.060.10.1016/j.watres.2010.07.06020716459Open DOISearch in Google Scholar

29. Mahmoud, K.A., Mansoor, B., Mansour, A. & Khraisheh, M. (2015). Functional graphene nanosheets: The next generation membranes for water desalination. Desalination 356, 208–225. DOI: 10.1016/j.desal.2014.10.022.10.1016/j.desal.2014.10.022Open DOISearch in Google Scholar

30. Han, Y., Xu, Z. & Gao, C. (2013). Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 23, 3693–3700. DOI: 10.1002/adfm.201202601.10.1002/adfm.201202601Open DOISearch in Google Scholar

31. Joshi, R.K., Alwarappan, S., Yoshimura, M, Sahajwalla, V. & Nishina, Y. (2015). Graphene oxide: the new membrane material. Appl. Mater. Today 1–12. DOI: 10.1016/j.apmt.2015.06.002.10.1016/j.apmt.2015.06.002Open DOISearch in Google Scholar

32. He, L., Dumée, L.F., Feng, C., Velleman, L., Reis, R., She, F., Gao, W. & Kong, L. (2015). Promoted water transport across graphene oxide–poly(amide) thin film composite membranes and their antibacterial activity. Desalination 365, 126–135. DOI: 10.1016/j.desal.2015.02.032.10.1016/j.desal.2015.02.032Open DOISearch in Google Scholar

33. Park, M.J., Phuntsho, S., He, T., Nisola, G.M., Tijing, L.D., Li, X.M., Chen, G., Chung, W.J. & Shon, H.K. (2015). Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes. J. Memb. Sci. 493, 496–507. DOI: 10.1016/j.memsci.2015.06.053.10.1016/j.memsci.2015.06.053Open DOISearch in Google Scholar

34. Xia, S., Ni, M., Zhu, T., Zhao, Y. & Li, N. (2015). Ultrathin graphene oxide nanosheet membranes with various d-spacing assembled using the pressure-assisted filtration method for removing natural organic matter. Desalination 371, 78–87. DOI: 10.1016/j.desal.2015.06.005.10.1016/j.desal.2015.06.005Open DOISearch in Google Scholar

35. Faria, A.F., Liu, C., Xie, M., Perreault, F., Nghiem, L.D., Ma, J. & Elimelech, M. (2017). Thin-film composite forward osmosis membranes functionalized with graphene oxide–silver nanocomposites for biofouling control. J. Memb. Sci. 525, 146–156. DOI: 10.1016/j.memsci.2016.10.040.10.1016/j.memsci.2016.10.040Open DOISearch in Google Scholar

36. Goh, P.S. & Ismail, A.F. (2015). Graphene-based nanomaterial: The state-of-the-art material for cutting edge desalination technology. Desalination. 356, 115–128. DOI: 10.1016/j.desal.2014.10.001.10.1016/j.desal.2014.10.001Open DOISearch in Google Scholar

37. Nair, R.R., Wu, H.A., Jayaram, P.N., Grigorieva, I.V. & Geim, A.K. (2012). Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-Based Membranes. Science 335, 442–444. DOI: 10.1126/science.1211694.10.1126/.1211694Open DOISearch in Google Scholar

38. Bhadra, M., Roy, S. & Mitra, S. (2016). Desalination across a graphene oxide membrane via direct contact membrane distillation. Desalination 378, 37–43. DOI: 10.1016/j.desal.2015.09.026.10.1016/j.desal.2015.09.026Open DOISearch in Google Scholar

39. Zhang, X., Yu, H., Yang, H., Wan, Y., Hu, H., Zhai, Z. & Qin, J. (2015). Graphene oxide caged in cellulose microbeads for removal of malachite green dye from aqueous solution. J. Coll. Inter. Sci. 437, 277–282. DOI: 10.1016/j.jcis.2014.09.048.10.1016/j.jcis.2014.09.04825441361Open DOISearch in Google Scholar

40. Zhu, W., Li, W., He, Y. & Duan, T. (2015). In-situ biopreparation of biocompatible bacterial cellulose/graphene oxide composites pellets. Appl. Surf. Sci. 338, 22–26. DOI: 10.1016/j.apsusc.2015.02.030.10.1016/j.apsusc.2015.02.030Open DOISearch in Google Scholar

41. Wan, C. & Li, J. (2016). Graphene oxide/cellulose aerogels nanocomposite: Preparation, pyrolysis, and application for electromagnetic interference shielding. Carbohydr. Polym. 150, 172–179. DOI: 10.1016/j.carbpol.2016.05.051.10.1016/j.carbpol.2016.05.05127312627Open DOISearch in Google Scholar

42. Rui-Hong, X., Peng-Gang, R., Jian, H., Fang, R., Lian-Zhen, R. & Zhen-Feng, S. (2016). Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior. Carbohydr. Polym. 138, 222–228. DOI: 10.1016/j.carbpol.2015.11.042.10.1016/j.carbpol.2015.11.04226794756Open DOISearch in Google Scholar

43. Liu, G., Ye, H., Li, A., Zhu, C., Jiang, H., Liu, Y., Han, K. & Zhou, Y. (2016). Graphene oxide for high-efficiency separation membranes: Role of electrostatic interactions. Carbon N. Y. 110, 56–61. DOI: 10.1016/j.carbon.2016.09.005.10.1016/j.carbon.2016.09.005Open DOISearch in Google Scholar

44. Huang, Q., Xu, M., Sun, R. & Wang, X. (2016). Large scale preparation of graphene oxide/cellulose paper with improved mechanical performance and gas barrier properties by conventional papermaking method. Ind. Crops Prod. 85, 198–203. DOI: 10.1016/j.indcrop.2016.03.006.10.1016/j.indcrop.2016.03.006Open DOISearch in Google Scholar

45. Yang, X.N., Xue, D.D., Li, J.Y., Liu, M., Jia, S.R., Chu, L.Q., Wahid, F., Zhang, Y.M. & Zhong, C. (2016). Improvement of antimicrobial activity of graphene oxide/bacterial cellulose nanocomposites through the electrostatic modification. Carbohydr. Polym. 136, 1152–1160. DOI: 10.1016/j.carbpol.2015.10.020.10.1016/j.carbpol.2015.10.02026572458Open DOISearch in Google Scholar

46. Kafy, A., Akther, A., Shishir, M.I.R., Kim, H.C, Yun, Y. & Kim, J. (2016). Cellulose nanocrystal/graphene oxide composite film as humidity sensor. Sensors Actuators, A Phys. 247, 221–226. DOI: 10.1016/j.sna.2016.05.045.10.1016/j.sna.2016.05.045Open DOISearch in Google Scholar

47. Kim, C.J., Khan, W., Kim, D.H., Cho, K.S. & Park, S.Y. (2011). Graphene oxide/cellulose composite using NMMO monohydrate. Carbohydr. Polym. 86, 903–909. DOI: 10.1016/j.carbpol.2011.05.041.10.1016/j.carbpol.2011.05.041Open DOISearch in Google Scholar

48. Tang, L., Li, X., Du, D. & He, C. (2012). Fabrication of multilayer films from regenerated cellulose and graphene oxide through layer-by-layer assembly. Prog. Nat. Sci. Mater. Int. 22, 341–346. DOI: 10.1016/j.pnsc.2012.06.005.10.1016/j.pnsc.2012.06.005Open DOISearch in Google Scholar

49. Cao, Y., Wu, J., Zhang, J., Li, H., Zhang, Y. & He, J. (2009). Room temperature ionic liquids (RTILs): A new and versatile platform for cellulose processing and derivatization. Chem. Eng. J. 147, 13–21. DOI: 10.1016/j.cej.2008.11.011.10.1016/j.cej.2008.11.011Open DOISearch in Google Scholar

50. Hummers, W.S. & Offeman, R.E. (1958). Preparation of Graphitic Oxide. J. Am. Chem. Soc. 80, 1339–1339. DOI: 10.1021/ja01539a017.10.1021/ja01539a017Open DOISearch in Google Scholar

51. Fryczkowska, B., Sieradzka, M., Sarna, E., Fryczkowski, R. & Janicki, J. (2015). Influence of a graphene oxide additive and the conditions of membrane formation on the morphology and separative properties of poly(vinylidene fluoride) membranes. J. Appl. Polym. Sci. 132, DOI: 10.1002/app.42789.10.1002/app.42789Open DOISearch in Google Scholar

52. Zinadini, S., Zinatizadeh, A.A., Rahimi, M., Vatanpour, V. & Zangeneh, H. (2014). Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Memb. Sci. 453, 292–301. DOI: 10.1016/j.memsci.2013.10.070.10.1016/j.memsci.2013.10.070Open DOISearch in Google Scholar

53. Wypych, G. (2012). Handbook of Polymers (2nd edition). Ontario, Canada: ChemTec Publishing.Search in Google Scholar

54. Kosan, B., Michels, C. & Meister, F. (2008). Dissolution and forming of cellulose with ionic liquids. Cellulose 15, 59–66. DOI: 10.1007/s10570-007-9160-x.10.1007/s10570-007-9160-xOpen DOISearch in Google Scholar

55. Gupta, K. M., Hu, Z. & Jiang, J. (2011). Mechanistic understanding of interactions between cellulose and ionic liquids: A molecular simulation study. Polymer (Guildf) 52, 5904–5911. DOI: 10.1016/j.polymer.2011.10.035.10.1016/j.polymer.2011.10.035Open DOISearch in Google Scholar

56. Xu, A., Guo, X. & Xu, R. (2015). Understanding the dissolution of cellulose in 1-butyl-3-methylimidazolium acetate-+DMAc solvent. Int. J. Biol. Macromol. 81, 1000–1004. DOI: 10.1016/j.ijbiomac.2015.09.058.10.1016/j.ijbiomac.2015.09.05826432363Open DOISearch in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik