1. bookVolumen 62 (2017): Heft 1 (March 2017)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1508-5791
Erstveröffentlichung
25 Mar 2014
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Investigation of 99Mo potential production via UO2SO4 liquid target irradiation in a 5 MW nuclear research reactor

Online veröffentlicht: 04 Mar 2017
Volumen & Heft: Volumen 62 (2017) - Heft 1 (March 2017)
Seitenbereich: 37 - 45
Eingereicht: 30 Jan 2016
Akzeptiert: 07 Nov 2016
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1508-5791
Erstveröffentlichung
25 Mar 2014
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

1. Rao, A., Kumar Sharma, A., Kumar, P., Charyulu, M. M., Tomar, B. S., & Rama Kumar, K. L. (2014). Studies on separation and purification of fission 99Mo from neutron activated uranium aluminum alloy. J. Appl. Radiat. Isot., 89, 186–191. DOI: 10.1016/j.apradiso.2014.02.013.10.1016/j.apradiso.2014.02.01324657474Search in Google Scholar

2. Muenze, R., Juergen Beyer, G., Ross, R., Wagner, G., Novotny, D., Franke, E., Jehangir, M., Pervez, S., & Mushtaq, A. (2013). The fission-based 99Mo production process ROMOL-99 and its application to PINSTECH Islamabad. Sci. Technol. Nucl. Install., 2013, Article ID 932546, 9 pp. http://dx.doi.org/10.1155/2013/932546.10.1155/2013/932546Search in Google Scholar

3. Ali, K. L., Ahmad Khan, A., Mushtaq, A., Imtiaz, F., MaratabZiai, A., Gulzar, A., Farooq, M., Hussain, N., Ahmed, N., Pervez, S., & Zaidi, J. H. (2013). Development of low enriched uranium target plates by thermo-mechanical processing of UAl2–Al matrix for production of 99Mo in Pakistan. J. Nucl. Eng. Des., 255, 77–85. DOI: 10.1016/j.nucengdes.2012.10.014.10.1016/j.nucengdes.2012.10.014Search in Google Scholar

4. Burril, K. A., & Harrison, R. J. (1989). Development of the 99Mo process at CRNL. In Fission molybdenum for medical use. Proceedings of Technical Committee Meeting organized by the International Atomic Energy Agency and held in Karlsruhe, 13–16 October 1987 (pp. 35–46). Vienna: International Atomic Energy Agency. (IAEA-TECDOC-515).Search in Google Scholar

5. Arino, H., Kramer, H. H., McGovern, J. J., & Thornton, A. K. (1974). Production of high purity fission product molybdenum-99. U.S. Patent 3,799,883.Search in Google Scholar

6. Youker, A. J., Chemerisov, S. D., Kalensky, M., Tkac, P., Bowers, D. L., & Vandegrift, G. F. (2013). A solution-based approach for Mo-99 production: Considerations for nitrate versus sulfate media. J. Sci. Technol. Nucl. Install., 2013, Article ID 402570, 10 pp. http://dx.doi.org/10.1155/2013/402570.10.1155/2013/402570Search in Google Scholar

7. Bennett, M. E., Bowers, D. L., Pereira, C., & Vandegrift, G. F. (2014). Conversion of uranyl sulfate solution to uranyl nitrate solution for processing in UREX. In 2014 Mo-99 Topical Meeting, 24–27 June 2014, Washington D.C. (S9-P1, 11 pp.). Available from http://mo99.ne.anl.gov/2014/pdfs/papers/S9P1%20Paper%20Bennett.pdf.Search in Google Scholar

8. Elgin, K. (2014). A study of the feasibility of 99Mo production inside the TU Delft Hoger Onderwijs Reactor, A Monte Carlo serpent analysis of the HOR research reactor and its medical isotope production capabilities using uranium salts. Thesis, Delft University of Technology, The Netherlands.Search in Google Scholar

9. Micklich, B. J. (2015). Remanent activation in the mini-SHINE experiments. In 3rd International Workshop on Accelerator Radiation Induced Activation (ARIA’15), 15–17 April 2015, Knoxville, Tennessee, USA (36 pp.). Available from https://public.ornl.gov/neutrons/conf/aria2015/presentations/12%20Remanent%20Activation%20in%20the%20mini-SHINE%20Experiments.pdf.Search in Google Scholar

10. May, I., Rios, D., Anderson, A. S., Bitteker, L., Copping, R., Dale, G. E., Dalmas, D. A., Gallegos, M. J., Garcia, E. K., Kelsey, C. T., Mocko, M., Reilly, S. D., Stephens, F. H., Taw, F. L., & Woloshun, K. A. (2013). A technical demonstration of the initial stage of Mo-99 recovery from a low enriched uranium sulfate solution. Los Alamos National Laboratory. (LA-UR-13-28967).10.2172/1107941Search in Google Scholar

11. Ball, R. M. (1997). Characteristics of nuclear reactors used for the production of molybdenum-99. In Production technologies for molybdenum-99 and technetium-99m (pp. 5–17). Vienna: International Atomic Energy Agency. (IAEA-TECDOC-1065). Availaible from http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/30/013/30013597.pdf.Search in Google Scholar

12. Pelowitz, D. B. (2008). MCNPX User’s Manual. Version 2.6.0.s.l. Los Alamos National Laboratory. (LA-CP-07-1473).Search in Google Scholar

13. Fensin, M. L. (2008). Development of the MCNPX depletion capability: A Monte Carlo depletion method that automates the coupling between MCNPX and CINDER90 for high fidelity burnup calculations. Florida University.Search in Google Scholar

14. IAEA. (2008). Homogeneous aqueous solution nuclear reactors for the production of Mo-99 and other short lived radioistotopes. Vienna: International Atomic Energy Agency. (IAEA-TECDOC-1601).Search in Google Scholar

15. Briesmeister, J. F. (2000). MCNP-A General Monte Carlo N-Particle Transport code Version 4C. Los Alamos National Laboratory. (LA-13709-M).Search in Google Scholar

16. Gallmeier, F. X., Iverson, E. B., Lu, W., Ferguson, P. D., Holloway, S. T., Kelsey, Ch., Muhrer, G., Pitcher, E., Wohlmuther, M., & Micklich, B. (2010). The CINDER’90 transmutation code package for use in accelerator applications in combination with MCNPX. In Proceedings of the19th Meeting on Collaboration of Advanced Neutron Sources, March 8–12, 2010 (6 pp.), Grindelwald, Switzerland. Available from http://www.iaea.org/inis/collection/NCLCollection-Store/_Public/46/109/46109595.pdf?r=1.Search in Google Scholar

17. Slessarev, I. (2000). Long term radiotoxicity. Lecture given at the Workshop on Nuclear Data and Nuclear Reactors: Physics, Design and Safety, Trieste, 13 March – 14 April, 2000 (LNS015029). Available from http://users.ictp.it/~pub_off/lectures/lns005/Number_2/Slessarev_1.pdf.Search in Google Scholar

18. Rijnsdorp, S. (2014). Design of a small Aqueous Homogeneous Reactor for production of 99Mo. M.Sc. Thesis, Delft University of Technology, The Netherlands. Available from http://www.janleenkloosterman.nl/reports/thesis_rijnsdorp_2014.pdf.Search in Google Scholar

19. Köster, U. (2011). Present day production of 99Mo and alternatives. Grenoble: Institut Laue Langevin.Search in Google Scholar

20. Mohammad, A., Mahmood, T., & Iqbal, M. (2009). Fission MOLY production at PARR-1 using LEU plate type target. J. Nucl. Eng. Des., 239, 521–525. DOI: 10.1016/j.nucengdes.2008.11.008.10.1016/j.nucengdes.2008.11.008Search in Google Scholar

21. Tárkányi, F., Hermanne, A., Takács, S., Sonck, M., Szücs, Z., Király, B., & Ignatyuk, A. V. (2011). Investigation of alternative production routes of 99mTc: deuteron induced reactions on 100Mo. J. Appl. Radiat. Isot., 69, 18–25. DOI: 10.1016/j.apradiso.2010.08.006.10.1016/j.apradiso.2010.08.00620817541Search in Google Scholar

22. Ruth, T. J. (2015). The medical isotope crisis: How we got here and where we are going. Vancouver, British Columbia, Canada: TRIUMF and the British Columbia Cancer Agency.Search in Google Scholar

23. Jun, B. J., Tanimoto, M., Kimura, A., Hori, N., Izumo, H., & Tsuchia, K. (2010). Feasibility study on mass production of (n,γ)99Mo. Japan Atomic Energy Agency. (JAEA-Research 2010-046).Search in Google Scholar

24. Rosenthal, G. B., & Lewin, H. C. (2014). Production of 99Mo using high-current alpha beams. In NNSA’s 2014 Mo-99 Topical Meeting, 24–27 June 2014, Washington D.C. Available from http://mo99.ne.anl.gov/2014/pdfs/papers/S11P4%20Paper%20Rosenthal.pdf.Search in Google Scholar

25. Faghihian, H., Malekpour, A., & Maragheh, M. G. (2003). Modification of clinoptilolite by surfactants for molibdate (99Mo) adsorption from aqueous solutions. J. Sci. Islamic Republic of Iran, 14, 239–245.Search in Google Scholar

26. Stepinski, D. C., Gelis, A. V., Gentner, P., Bakel, A., & Vandegrift, G. F. (2008). Evaluation of Radsorb, Isosorb (Termoxid) and PZC as potential sorbents for separation of 99Mo from a homogeneous-reactor fuel solution. In Homogeneous aqueous solution nuclear reactor for the production of Mo-99 and other short lived radioisotopes (pp. 73–80). Vienna: International Atomic Energy Agency. (IAEA-TECDOC-1601). Available from http://www-pub.iaea.org/MTCD/Publications/PDF/te_1601_web.pdf.Search in Google Scholar

27. Ling, L., Chung, P. L., Youker, A., Stepinski, D. C., Vandegrift, G. F., & Wang, N. H. L. (2013). Capture chromatography for Mo-99 recovery from uranyl sulfate solutions: Minimum-column-volume design method. J. Chromatogr. A, 1309, 1–14. DOI: 10.1016/j.chroma.2013.08.023.10.1016/j.chroma.2013.08.02323972458Search in Google Scholar

28. Dale, G. E., Dalmas, D. A., Gallegos, M. J., Jackman, K. R., Kelsey, C. T., May, I., Reilly, S. D., & Stange, G. M. (2012). 99Mo separation from high-concentration irradiated uranium nitrate and uranium sulfate solutions. J. Ind. Eng. Chem. Res., 51, 13319–13322. DOI: 10.1021/ie3008743.10.1021/ie3008743Search in Google Scholar

29. Wu, D., Landsberger, S., Buchholz, B. A., & Vandegrift, G. F. (1994). Processing of LEU targets for 99Mo productiontesting and modification of the cintichem process. Lecture presented at the 1995 International Meeting on Reduced Enrichment for Research and Test Reactors, September 18–21, 1994, Paris, France. Available from http://www.rertr.anl.gov/MO99/WU95.pdf.Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo