Uneingeschränkter Zugang

Effects of the pre-irradiation storage procedure on the dose response of a Fricke xylenol orange gel dosimeter


Zitieren

1. Attix, F. H. (2004). Introduction to radiological physics and radiation dosimetry. Germany: Wiley-VCH Verlag.Search in Google Scholar

2. Appleby, A., & Leghrouz, A. (1991). Imaging of radiation dose by visible color development in ferrousagarose Xylenol orange gels. Med. Phys., 18, 309-312. DOI: 10.1118/1.596676.10.1118/1.596676Search in Google Scholar

3. Lepage, M., & Jordan, K. (2010). 3D dosimetry fundamentals: gels and plastics. J. Phys.-Conf. Ser., 250, 253-261. DOI: 10.1088/1742-6596/250/1/012055.10.1088/1742-6596/250/1/012055Search in Google Scholar

4. Schreiner, L. J. (2004). Review of Fricke gel dosimeters. J. Phys.-Conf. Ser., 3, 9-21. DOI: 10.1088/1742-6596/3/1/003.10.1088/1742-6596/3/1/003Search in Google Scholar

5. Keall, P., & Baldock, C. (1999). A theoretical study of the radiological properties and water equivalence of Fricke and polymer gels used for radiation dosimetry. Austral. Phys. Eng. Sci. Med., 22(3), 85-91.Search in Google Scholar

6. Davies, J. B., & Baldock, C. (2008). Sensitivity and stability of the Fricke-gelatin-xylenol orange gel dosimetery. Radiat. Phys. Chem., 77(6), 690-696. DOI: 10.1016/j.radphyschem.2008.01.007.10.1016/j.radphyschem.2008.01.007Search in Google Scholar

7. Bero, M. A. (2007). Dosimetric properties of a radiochromic gel detector for diagnostic X-rays. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 39(7), 186-189. DOI: 10.1016/j. nima.2007.05.080.Search in Google Scholar

8. Gambarini, G., Gomarasca, G., Marchesini, R., Pecci, A., Pirola, L., & Tomatis, S. (1999). Three-dimensional determination of absorbed dose by spectrophotometric analysis of ferrous-sulphate agarose gel. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 422(1/3), 643-648. DOI: 10.1016/S0168-9002(98)00975-9.10.1016/S0168-9002(98)00975-9Search in Google Scholar

9. Baldock, C., Harris, P. J., Piercy, A. R., & Healy, B. (2001). Experimental determination of the diffusion coefficient in two-dimensions in ferrous sulphate gels using the finite element method. Austral. Phys. Eng. Sci. Med., 24(1), 19-30. DOI: 10.1007/BF03178282.10.1007/BF0317828211458569Search in Google Scholar

10. Gore, J. C., & Kang, Y. S. (1984). Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging. Phys. Med. Biol., 29(10), 1189-1197. DOI: 10.1088/0031-9155/29/10/002.10.1088/0031-9155/29/10/0026494247Search in Google Scholar

11. De Deene, Y. (2004). Fundamentals of MRI measurements for gel dosimetry. J. Phys.-Conf. Ser., 3, 87-114. DOI: 10.1088/1742-6596/3/1/009.10.1088/1742-6596/3/1/009Search in Google Scholar

12. Jordan, K. J., & Battista, J. (2004). Dose response of ferrous-xylenol orange gels: the effects of gel substrate, gelation time and dose fractionation. J. Phys.-Conf. Ser., 3, 232-235. DOI: 10.1088/1742-6596/3/1/035.10.1088/1742-6596/3/1/035Search in Google Scholar

13. Jordan, K. J., MacDonald, D. J., Pajak, T., & Battista, J. J. (2001). Refrigeration temperature gradients generate dose response artifacts in Fricke gelatin dosimeters. In DosGel2001 2nd International Conference on Radiotherapy Gel Dosimetry (pp. 95-98). Brisbane, Australia.Search in Google Scholar

14. Davies, J. B., & Baldock, C. (2010). Temperature dependence on the dose response of the Fricke-gelatin-xylenol orange gel dosimeter. Radiat. Phys. Chem., 79(5), 660-662. DOI: 10.1016/j.radphyschem. 2009.11.014.Search in Google Scholar

eISSN:
0029-5922
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nuklearchemie, Physik, Astronomie und Astrophysik, andere