Uneingeschränkter Zugang

Ion acceleration from intense laser-generated plasma: methods, diagnostics and possible applications

   | 22. Juni 2015

Zitieren

1. Gammino, S., Torrisi, L., Andò, L., Ciavola, G., Celona, L., Krasa, J., Laska, L., Pfeifer, M., Rohlena, K., Woryna, E., Wolowski, J., Parys,. P., & Shirkov, G. D. (2002). Production of low energy, high intensity metal ion beams by means of a laser ion source. Rev. Sci. Instrum., 73(2), 650–653.10.1063/1.1430514Search in Google Scholar

2. Torrisi, L., Cavallaro, S., Cutroneo, M., Giuffrida, L., Krasa, J., Margarone, D., Velyhan, A., Kravarik, J., Ullschmied, J., Wolowski, J., Szydlowski, A., & Rosinski, M. (2012). Monoenergetic proton emission from nuclear reaction induced by high intensity laser-generated plasma. Rev. Sci. Instrum., 83, 02B111-4. DOI: 10.1063/1.3671741.10.1063/1.367174122380268Search in Google Scholar

3. Maksimchuk, A., Gu, S., Flippo, K., Umstadter, D., & Bychenkov, V. Yu. (2000). Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett., 84, 4108–4111. http://dx.doi.org/10.1103/PhysRevLett.84.4108.10990622Search in Google Scholar

4. Andò, L., Torrisi, L., Gammino, S., & et al. (2003). Laser ion source for multile Ta ion implantation. In Gammino-Mezzasalma-Neri-Torrisi (Eds.) Proceedings of PPLA2003, September 2003, Messina (pp. 142–148). Singapore: World Scientific Publ.Search in Google Scholar

5. Cirrone, G. A. P., Carpinelli, M., Cuttone, G., Gammino, G., Bijan Jia, S., Korn, G., Maggiore, M., Manti, L., Margarone, D., Prokupek, J., Renis, M., Romano, F., Schillaci, F., Tomasello, B., Torrisi, L., Tramontana, A., & Velyhan, A. (2013). ELIMED, future hadrontherapy applications of laser-accelerated beams. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 730, 174–177. DOI: 10.1016/J.nima.2013.05.051.10.1016/j.nima.2013.05.051Search in Google Scholar

6. Torrisi, L., Caridi, F., Giuffrida, L., Torrisi, A., Mondio, G., Serafino, T., Caltabiano, M., Castrizio, E. D., Paniz, E., & Salici, A. (2010). LAMQS analysis applied to ancient Egyptian bronze coins. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 268, 1657–1664. DOI: 10.1016/j.nimb.2010.03.015.10.1016/j.nimb.2010.03.015Search in Google Scholar

7. Eliezer, S. (2002). The interaction of high-power lasers with plasmas. Bristol: IOP.10.1887/0750307471Search in Google Scholar

8. Laska, L., Cavallaro, S., Jungwirth, K., Krasa, J., Krousky, E., Margarone, D., Mezzasalma, A., Pfeifer, M., Rohlena, K., Ryc, L., Skala, J., Torrisi, L., Ullschmied, J., Velyhan, A., & Verona-Rinati, G. (2009). Experimental studies of emission of highly charged Au-ions and of X-rays from the laser-produced plasma at high laser intensities. Eur. Phys. J. D, 54, 487–492. http://dx.doi.org/10.1140/epjd/e2008-00226-8.Search in Google Scholar

9. Badziak, J., Głowacz, S., Jabłoński, S., Parys, P., Wołowski, J., Hora, H., Krása, J., Láska, L., & Rohlena, K. (2004). Production of ultrahigh ion current densities at skin-layer subrelativistic laser–plasma interaction. Plasma Phys. Contr. Fusion, 46(12B), 044, 83111-7. DOI: 10.1088/0741-3335/46/12B/044.10.1088/0741-3335/46/12B/044Search in Google Scholar

10. Robinson, A. P. L., Zepf, M., Kar, S., Evans, R. G., & Bellei, C. (2008). Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys., 10, 1367-1-13. DOI: 10.1088/1367-2630/10/1/013021.10.1088/1367-2630/10/1/013021Search in Google Scholar

11. Garcia, M. A. (2011). Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D-Appl. Phys., 44, 283001(20pp.). DOI: 10.1088/0022-3727/44/28/283001.10.1088/0022-3727/44/28/283001Search in Google Scholar

12. Wen, L., Li, X., Zhao, Z., Bu, S., Zeng, X.S., Huang, J., & Wang, Y. (2012). Theoretical consideration of III–V nanowire/Si triple-junction solar cells. Nanotechnology, 23(50), 505202–505211. DOI: 10.1088/0957-4484/23/50/505202.10.1088/0957-4484/23/50/505202Search in Google Scholar

13. Nanopartz™ Bare Gold Nanorodz. (2014). http://www.nanopartz.com/bare_gold_nanorods.asp.Search in Google Scholar

14. Torrisi, L., Margarone, D., Laska, L., Krasa, J., Velyhan, A., Pfeifer, M., Ullschmied, J., & Ryc, L. (2008). Self-focusing effect in Au-target induced by high power pulsed laser at PALS. Laser Part. Beams, 26, 379–387. http://dx.doi.org/10.1017/S0263034608000396.Search in Google Scholar

15. Vector Field Software. (2014). http://www.vectorfields.co.uk/.Search in Google Scholar

16. Thum-Jager, A., & Rohr, K. (1999). Angular emission distributions of neutrals and ions in laser ablated particle beams. J. Phys. D-Appl. Phys., 32, 2827–2832. DOI: 10.1088/0022-3727/32/21/318.10.1088/0022-3727/32/21/318Search in Google Scholar

17. Torrisi, L., Cutroneo, M., Andò, L., & Ullschmied, J. (2013). Thomson parabola spectrometry for gold laser-generated plasmas. J. Phys. Plasmas, 20, 023106-1-7. http://dx.doi.org/10.1063/1.4793454.Search in Google Scholar

18. Láska, L., Badziak, J., Jungwirth, K., Kálal, M., Krása, J., Krouský, E., Kubeš, P., Margarone, D., Parys, P., Pfeifer, M., Rohlena, K., Rosinski, M., Ryc, L., Skála, J., Torrisi, L., Ullschmied, J., Velyhan, A., & Wolowski, J. (2010). Analysis of processes participating during intense iodine-laser-beam interactions with laser-produced plasmas. Radiat. Eff. Defects Solids, 165(6/10), 463–471. DOI: 10.1080/10420151003718550.10.1080/10420151003718550Search in Google Scholar

19. Gammino, S., Torrisi, L., Consoli, F., Margarone, D., Celona, L., & Ciavola, G. (2008). Perspectives for the ECLISSE method with 3rd generation ECRIS. Radiat. Eff. Defects Solids, 163(4/6), 277–286. DOI: 10.1080/10420150701777868.10.1080/10420150701777868Search in Google Scholar

20. Torrisi, L., Gammino, S., Mezzasalma, A. M., Badziak, J., Parys, P., Wolowski, J., Woryna, E., Krása, J., Láska, L., Pfeifer, M., Rohlena, K., & Boody, F. P. (2003). Implantation of ions produced by the use of high power iodine laser. Appl. Surf. Sci., 217, 319–331. DOI: 10.1016/S0169-4332(03)00551-8.10.1016/S0169-4332(03)00551-8Search in Google Scholar

eISSN:
0029-5922
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nuklearchemie, Physik, Astronomie und Astrophysik, andere