Uneingeschränkter Zugang

Experimental and Numerical Study on PDMS Collapse for Fabrication of Micro/Nanochannels

 und    | 30. Dez. 2016

Zitieren

[1] SPARREBOOM, W.—VANDENBERG, A.—EIJKEL, J. C. T. : Principles and applications of nanofluidic transport, Nature Nanotechnology 4 No. 11 (2009), 713-720.10.1038/nnano.2009.33219898499Search in Google Scholar

[2] FREEDMAN, K. J.—HAQ, S. R.—EDEL, J. B.—JEMTH, P.—KIM, M. J. : Single molecule unfolding and stretching of protein domains inside a solid-state nanopore by electric field, Scientific Reports 3 (2013), 1638.10.1038/srep01638362207823572157Search in Google Scholar

[3] SCHOCH, R. B.—RENAUD, P. : Ion transport through nanoslits dominated by the effective surface charge, Applied Physics Letters 86 No. 25 (2005), 253111.10.1063/1.1954899Search in Google Scholar

[4] PLECIS, A.—SCHOCH, R. B.—RENAUD, P. : Ionic transport phenomena in nanofluidics, Nano Letters, 5 No. 6 (2005), 1147-1155.Search in Google Scholar

[5] WANG, Y. C.—STEVENS, A. L.—HAN, J. Y. : Million-fold preconcentration of proteins and peptides by nanofluidic filter, Analytical Chemistry, 77 No. 14 (2005), 4293-4299.Search in Google Scholar

[6] ZHOU, K.—LI, L.—TAN, Z.—ZLOTNICK, A.—JACOBSON, S. C. : Characterization of Hepatitis B Virus Capsids by Resistive-Pulse Sensing, Journal of the American Chemical Society, 133 No. 6 (2011), 1618-1621.Search in Google Scholar

[7] FU, J. P.—MAO, P.—HAN, J. Y. : Nanofilter array chip for fast gel-free biomolecule separation, Applied Physics Letters, 87 No. 26 (2005), 263902.10.1063/1.2149979256460618846250Search in Google Scholar

[8] ABGRALL, P.—LOW, L.-N.—NGUYEN, N.-T. : Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding, Lab on a Chip, 7 No. 4 (2007), 520-522.Search in Google Scholar

[9] CHOI, S.—YAN, M.—ADESIDA, I. : Fabrication of triangular nanochannels using the collapse of hydrogen silsesquioxane resists, Applied Physics Letters, 93 No. 16 (2008), 163113.10.1063/1.3006322Search in Google Scholar

[10] YASUI, T.—KAJI, N.—OGAWA, R.—HASHIOKA, S.—TOKESHI, M.—HORIIKE, Y.—BABA, Y. : DNA separation in nanowall array chips, Analytical Chemistry, 83 No. 17 (2011), 6635-6640.Search in Google Scholar

[11] NAM, S. W.—LEE, M. H.—LEE, S. H.—LEE, D. J.—ROSSNAGEL, S. M.—KIM, K. B. : Sub-10-nm nanochannels by self-sealing and self-limiting atomic layer deposition, NanoLetters, 10 No. 9 (2010), 3324-3329.Search in Google Scholar

[12] FAN, L.—KHENGBOON, T.—MALAR, P.—BIKKAROLLA, S. K.—VANKAN, J. A. : Fabrication of nickel molds using proton beam writing for micro/nanofluidic devices, Microelectronic Engineering, 102 (2012), 36-39.Search in Google Scholar

[13] VANKAN, J. A.—ZHANG, C.—MALAR, P. P.—van der MAAREL, J. R. C. : High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies, Biomicrofluidics, 6 No. 3 (2012), 036502.10.1063/1.4740231342330723898358Search in Google Scholar

[14] MENARD, L. D.—RAMSEY, J. M. : Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling, NanoLetters, 11 No. 2 (2011), 512-517.Search in Google Scholar

[15] FANZIO, P.—MUSSI, V.—MANNESCHI, C.—ANGELI, E.—FIRPO, G.—REPETTOL.—VALBUSA, U. : DNA detection with a polymeric nanochannel device, Lab on a Chip, 11 No. 17 (2011), 2961-2966.Search in Google Scholar

[16] PHAN, V. N.—NGUYEN, N. T.—YANG, C.—JOSEPH, P.—GUE, A. M. : Fabrication and experimental characterization of nanochannels, Journal of Heat Transfer, 134 No. 5 (2012), 051012.10.1115/1.4005702Search in Google Scholar

[17] RIEHN, R.—AUSTIN, R. H.—STURM, J. C. : A nanofluidic railroad switch for DNA, NanoLetters, 6 No. 9 (2006), 1973-1976.Search in Google Scholar

[18] KUTCHOUKOV, V. G.—LAUGERE, F.—VANDERVLIST, W.—PAKULA, L.—GARINI, Y.—BOSSCHE, A. : Fabrication of nanofluidic devices using glass-to-glass anodic bonding, Sensors and Actuators a-Physical, 114 No. 2-3 (2004), 521-527.10.1016/j.sna.2003.12.027Search in Google Scholar

[19] MAO, P.—HAN, J. Y. : Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding, Lab on a Chip, 5 No. 8 (2005), 837-844.Search in Google Scholar

[20] CHANTIWAS, R.—HUPERT, M. L.—PULLAGURLA, S. R.—BALAMURUGAN, S.—TAMARIT-LOPEZ, J.—PARK, S.—DATTA, P.—GOETTERT, J.—CHO, Y.-K.—SOPER, S. A. : Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits, Lab on a Chip, 10.10.1039/c0lc00096e20938506Search in Google Scholar

[21] TENG, L.—KIRCHNER, R.—PLOETNER, M.—TUERKE, A.—JAHN, A.—HE, J.—HAGEMANN, F.—FISCHER, W.-J. : Fabrication and characterization of sub-500 nm channel organic field effect transistor using UV nanoimprint lithography with cheap Si-mold, Microelectronic Engineering, 97 (2012), 38-42.10.1016/j.mee.2012.04.004Search in Google Scholar

[22] HAWKINS, K. R.—YAGER, P. : Nonlinear decrease of background fluorescence in polymer thin-films - a survey of materials and how they can complicate fluorescence detection in mu TAS, Lab on a Chip, 3 No. 4 (2003), 248-252.Search in Google Scholar

[23] LLOPIS, S. D.—STRYJEWSKI, W.—SOPER, S. A. : Near-infrared time-resolved fluorescence lifetime determinations in poly(methylmethacrylate) microchip electrophoresis devices, Electrophoresis, 25 No. 21-22 (2004), 3810-3819.10.1002/elps.20040605415565677Search in Google Scholar

[24] XU, B. Y.—XU, J. J.—XIA, X. H.—CHEN, H. Y. : Large scale lithography-free nanochannel array on polystyrene, Lab on a Chip, 10 No. 21 (2010), 2894-2901.Search in Google Scholar

[25] LO, K. F.—JUANG, Y. J. : Fabrication of long poly(dimethyl siloxane) nanochannels by replicating protein deposit from confined solution evaporation, Biomicrofluidics, 6 No. 2 (2012), 026504.10.1063/1.4730371339130923781292Search in Google Scholar

[26] KIM, S. H.—CUI, Y.—LEE, M. J.—NAM, S.-W.—OH, D.—KANG, S. H.—KIM, Y. S.—PARK, S. : Simple fabrication of hydrophilic nanochannels using the chemical bonding between activated ultrathin PDMS layer and cover glass by oxygen plasma, Lab on a Chip, 11 No. 2 (2011), 348-353.Search in Google Scholar

[27] JOHN, H. : The molding of biological features using a flexible polymer mold, Micron, 42 No. 5 (2011), 429-433.Search in Google Scholar

[28] KIM, B.—HEO, J.—KWON, H. J.—CHO, VS. J.—HAN, J.—KIM, S. J.—LIM, G. : Tunable Ionic Transport for a Triangular Nanochannel in a Polymeric Nanofluidic System, Acs Nano, 7 No. 1 (2013), 740-747.Search in Google Scholar

[29] LEE, J.—YOON, Y.-K.—KIM, J.—KIM, Y.—JO, K. : Roof-collapsed PDMS mask for nanochannel fabrication, Bulletin of the Korean Chemical Society, 32 No. 1 (2010), 33-34.Search in Google Scholar

[30] PARK, S. M.—HUH, Y. S.—CRAIGHEAD, H. G.—ERICKSON, D. : A method for nanofluidic device prototyping using elastomeric collapse, Proceedings of the National Academy of Sciences of the United States of America, 106 No. 37 (2009), 15549-15554.Search in Google Scholar

[31] TAEKYUNG, K.—JEONGKOO, K.—OKCHAN, J. : Measurement of nonlinear mechanical properties of PDMS elastomer, Microelectronic Engineering, 88 No. 8 (2011), 1982-5.Search in Google Scholar

[32] NAGARAJAN, P.—YAO, D. : Uniform Shell Patterning Using Rubber-Assisted Hot Embossing Process. II. Process Analysis, Polymer Engineering and Science, 51 No. 3 (2011), 601-608.Search in Google Scholar

[33] HOCHENG, H.—NIEN, C. C. : Numerical analysis of effects of mold features and contact friction on cavity filling in the nanoimprinting process, Journal of Microlithography Microfabrication and Microsystems 5 No. 1 (2006), 011004.10.1117/1.2177286Search in Google Scholar

[34] XIANGDONG, Y.—HONGZHONG, L.—YUCHENG, D. : Research on the cast molding process for high quality PDMS molds, Microelectronic Engineering, 86 No. 3 (2009), 310-13.Search in Google Scholar

[35] MYEONGSUB, K.—BYEONG-UI, M.—HIDROVO, C. H. : Enhancement of the Thermo-mechanical Properties of PDMS Molds for the hot Embossing of PMMA Microfluidic Devices, Journal of Micromechanics and Microengineering, 23 No. 9 (2013), 095024.10.1088/0960-1317/23/9/095024Search in Google Scholar

eISSN:
1339-309X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere