1. bookVolumen 27 (2017): Heft 7 (September 2017)
01 Jan 1992
4 Hefte pro Jahr
Open Access

Effect and Mechanism of High-Pressure Processing: A Case Study of Flue-Cured Tobacco

Online veröffentlicht: 04 Oct 2017
Volumen & Heft: Volumen 27 (2017) - Heft 7 (September 2017)
Seitenbereich: 168 - 181
Eingereicht: 02 May 2017
Akzeptiert: 07 Sep 2017
01 Jan 1992
4 Hefte pro Jahr

1. Defaye, A.B., D.A. Ledward, D.B. MacDougall, and R.F. Tester: Renaturation of Metmyoglobin Subjected to High Isostatic Pressure; Food Chem. 52 (1995) 19–22. DOI: 10.1016/0308-8146(94)P4175-F10.1016/0308-8146(94)P4175-DOI öffnenSearch in Google Scholar

2. Hite, B.H.: The Effect of High Pressure in the Preservation of Milk; West Virginia Agricultural Experimental Station Bulletin 58 (1899) 15–35. Available at: https://archive.org/details/effectofpressure58hite (accessed August 2017)Search in Google Scholar

3. Evert-Arriagada, K., M.M. Hernández-Herrero, B. Guamis, and A.J. Trujillo: Commercial Application of High-Pressure Processing for Increasing Starter-Free Fresh Cheese Shelf-Life; LWT - Food Sci. Technol. 55 (2014) 498–505. DOI: 10.1016/j.lwt.2013.10.03010.1016/j.lwt.2013.10.030DOI öffnenSearch in Google Scholar

4. Maldonado, J.A., D.W. Schaffner, A.M. Cuitiño, and M.V. Karwe: In Situ Studies of Microbial Inactivation During High Pressure Processing; High Press. Res. 36 (2016) 79–89. DOI: 10.1080/08957959.2015.111188710.1080/08957959.2015.1111887DOI öffnenSearch in Google Scholar

5. Pietrzak, D., A. Cegiełka, M. Fonberg-Broczek, and M. Ziarno: Effects of High Pressure Treatment on the Quality of Chicken Patties; High Press. Res. 31 (2011) 350–357. DOI: 10.1080/08957959.2011.55250310.1080/08957959.2011.552503DOI öffnenSearch in Google Scholar

6. Houška, M., J. Strohalm, K. Kocurová, J. Totušek, D. Lefnerová, J. Tříska, N. Vrchotová, V. Fiedrleová, M. Holasova, D. Gabrovská, and I. Paulíčková: High Pressure and Foods—Fruit/Vegetable Juices; J. Food Eng. 77 (2006) 386–398. DOI: 10.1016/j.jfoodeng.2005.07.00310.1016/j.jfoodeng.2005.07.003DOI öffnenSearch in Google Scholar

7. Huang, R., M. Ye, X. Li, L. Ji, M. Karwe, and H. Chen: Evaluation of High Hydrostatic Pressure Inactivation of Human Norovirus on Strawberries, Blueberries, Raspberries and in Their Purees; Int. J. Food Microbiol. 223 (2016) 17–24. DOI: 10.1016/j.ijfoodmicro.2016.02.00210.1016/j.ijfoodmicro.2016.02.00226874862DOI öffnenSearch in Google Scholar

8. Buckow, R., J. Bingham, S. Daglas, S. Lowther, R. Amos-Ritchie, and D. Middleton: High Pressure Inactivation of Selected Avian Viral Pathogens in Chicken Meat Homogenate; Food Control 73 (2017) 215–222. DOI: 10.1016/j.foodcont.2016.08.00310.1016/j.foodcont.2016.08.003Search in Google Scholar

9. Yang, B., Y. Shi, X. Xia, M. Xi, X. Wang, B. Ji, and J. Meng: Inactivation of Foodborne Pathogens in Raw Milk Using High Hydrostatic Pressure; Food Control 28 (2012) 273–278. DOI: 10.1016/j.foodcont.2012.04.03010.1016/j.foodcont.2012.04.030DOI öffnenSearch in Google Scholar

10. Zhang, Y., X. Liu, Y. Wang, F. Zhao, Z. Sun, and X. Liao: Quality Comparison of Carrot Juices Processed by High-Pressure Processing and High-Temperature Short-Time Processing; Innov. Food Sci. Emerg. Technol. 33 (2016) 135–144. DOI: 10.1016/j.ifset.2015.10.01210.1016/j.ifset.2015.10.012Search in Google Scholar

11. Zetzl, C., K. Gairola, C. Kirsch, L. Perez-Cantu, and I. Smirnova: High Pressure Processes in Biorefineries; Chem. Ing. Tech. 83 (2011) 1016–1025. DOI: 10.1002/cite.20110002510.1002/cite.201100025DOI öffnenSearch in Google Scholar

12. Huang, H.-W., C.-P. Hsu, B.B. Yang, and C.-Y. Wang: Advances in the Extraction of Natural Ingredients by High Pressure Extraction Technology; Trends Food Sci. Technol. 33 (2013) 54–62. DOI: 10.1016/j.tifs.2013.07.00110.1016/j.tifs.2013.07.001DOI öffnenSearch in Google Scholar

13. Rastogi, N.K, K.S. Raghavarao, V.M. Balasubramaniam, K. Niranjan, and D. Knorr: Opportunities and Challenges in High Pressure Processing of Foods; Crit. Rev. Food Sci. Nutr. 47 (2007) 69–112. DOI: 10.1080/1040839060062642010.1080/1040839060062642017364696DOI öffnenSearch in Google Scholar

14. Khan N.M., T.H. Mu, H.N. Sun, M. Zhang, and J.W. Chen: Effects of High Hydrostatic Pressure on Secondary Structure and Emulsifying Behavior of Sweet Potato Protein; High Pressure Res. 35 (2015) 189–202. DOI: 10.1080/08957959.2015.100501310.1080/08957959.2015.1005013DOI öffnenSearch in Google Scholar

15. Tian, Y., J. Huang, T. Xie, L. Huang, W. Zhuang, Y. Zheng, and B. Zheng: Oenological Characteristics, Amino Acids and Volatile Profiles of Hongqu Rice Wines During Pottery Storage: Effects of High Hydrostatic Pressure Processing; Food Chem. 203 (2016) 456–464. DOI: 10.1016/j.foodchem.2016.02.11610.1016/j.foodchem.2016.02.11626948638DOI öffnenSearch in Google Scholar

16. Boluda-Aguilar, M., A. Taboada-Rodríguez, A. López-Gómez, F. Marín-Iniesta, and G.V. Barbosa-Cánovas: Quick Cooking Rice by High Hydrostatic Pressure Processing; LWT Food Sci. Technol. 51 (2013) 196–204. DOI: 10.1016/j.lwt.2012.09.02110.1016/j.lwt.2012.09.021DOI öffnenSearch in Google Scholar

17. Wennberg, M. and M. Nyman: On the Possibility of Using High Pressure Treatment to Modify Physico-Chemical Properties of Dietary Fibre in White Cabbage (Brassica Oleracea var. Capitata); Innov. Food Sci. Emerg. Technol. 5 (2004) 171–177. DOI: 10.1016/j.ifset.2004.02.00210.1016/j.ifset.2004.02.002DOI öffnenSearch in Google Scholar

18. Mateos-Aparicio, I., C. Mateos-Peinado, and P. Rupérez: High Hydrostatic Pressure Improves the Functionality of Dietary Fibre in Okara By-Product From Soybean; Innov. Food Sci. Emerg. Technol. 11 (2010) 445–450. DOI: 10.1016/j.ifset.2010.02.00310.1016/j.ifset.2010.02.003DOI öffnenSearch in Google Scholar

19. Cappa, C., M. Lucisano, G.V. Barbosa-Cánovas, and M. Mariotti: Physical and Structural Changes Induced by High Pressure on Corn Starch, Rice Flour and Waxy Rice Flour; Food Res. Int. 85 (2016) 95–103. DOI: 10.1016/j.foodres.2016.04.01810.1016/j.foodres.2016.04.01829544857DOI öffnenSearch in Google Scholar

20. Santos, M.D., J.A. Saraiva, M. Teresa, and S.R. Gomes: Pasting of Maize and Rice Starch After High Pressure Processing: Studies Based on an Acoustic Wave Sensor; Sens. Actuator B Chem. 209 (2015) 323–327. DOI: 10.1016/j.snb.2014.11.11010.1016/j.snb.2014.11.110DOI öffnenSearch in Google Scholar

21. Cappa, C., G.V. Barbosa-Cánovas, M. Lucisano, and M. Mariotti: Effect of High Pressure Processing on the Baking Aptitude of Corn Starch and Rice Flour; LWT Food Sci. Technol. 73 (2016) 20–27. DOI: 10.1016/j.lwt.2016.05.02810.1016/j.lwt.2016.05.028DOI öffnenSearch in Google Scholar

22. Jolie, R.P., S. Christiaens, A. De Roeck, I. Fraeye, K. Houben, S. Van Buggenhout, A.M. Van Loey, and M.E. Hendrickx: Pectin Conversions Under High Pressure: Implications for the Structure-Related Quality Characteristics of Plant-Based Foods; Trends Food Sci. Technol. 24 (2012) 103–118. DOI: 10.1016/j.tifs.2011.11.00310.1016/j.tifs.2011.11.003DOI öffnenSearch in Google Scholar

23. Tabilo-Munizaga, G., T.A. Gordon, R. Villalobos-Carvajal, L. Moreno-Osorio, F.N. Salazar, M. Pérez-Won, and S. Acuña: Effects of High Hydrostatic Pressure (HHP) on the Protein Structure and Thermal Stability of Sauvignon Blanc Wine; Food Chem. 155 (2014) 214–220. DOI: 10.1016/j.foodchem.2014.01.05110.1016/j.foodchem.2014.01.051DOI öffnenSearch in Google Scholar

24. Zhang, Z., Y. Yang, P. Zhou, X. Zhang, and J. Wang: Effects of High Pressure Modification on Conformation and Gelation Properties of Myofibrillar Protein; Food Chem. 217 (2017) 678–686. DOI: 10.1016/j.foodchem.2016.09.04010.1016/j.foodchem.2016.09.040DOI öffnenSearch in Google Scholar

25. Savadkoohi, S. and S. Kasapis: High Pressure Effects on the Structural Functionality of Condensed Globular-Protein Matrices; Int. J. Biol. Macromol. 88 (2016) 433–442. DOI: 10.1016/j.ijbiomac.2016.04.01210.1016/j.ijbiomac.2016.04.012DOI öffnenSearch in Google Scholar

26. Oey, I., M. Lille, A. Van Loey, and M. Hendrickx: Effect of High-Pressure Processing on Colour, Texture and Flavour of Fruit- and Vegetable-Based Food Products: A Review; Trends Food Sci. Technol. 19 (2008) 320–328. DOI: 10.1016/j.tifs.2008.04.00110.1016/j.tifs.2008.04.001DOI öffnenSearch in Google Scholar

27. Kim, K.W., Y.-T. Kim, M. Kim, B.-S. Noh, and W.-S. Choi: Effect of High Hydrostatic Pressure (HHP) Treatment on Flavor, Physicochemical Properties and Biological Functionalities of Garlic; LWT Food Sci. Technol. 55 (2014) 347–354. DOI: 10.1016/j.lwt.2013.08.02710.1016/j.lwt.2013.08.027DOI öffnenSearch in Google Scholar

28. Liu, S., Q. Xu, X. Li, Y. Wang, J. Zhu, C. Ning, X. Chang, and X. Meng: Effects of High Hydrostatic Pressure on Physicochemical Properties, Enzymes Activity, and Antioxidant Capacities of Anthocyanins Extracts of Wild Lonicera Caerulea Berry; Innov. Food Sci. Emerg. Technol. 36 (2016) 48–58. DOI: 10.1016/j.ifset.2016.06.00110.1016/j.ifset.2016.06.001DOI öffnenSearch in Google Scholar

29. Chakraborty, S., N. Kaushik, P.S. Rao, and H.N. Mishra: High-Pressure Inactivation of Enzymes: A Review on its Recent Applications on Fruit Purees and Juices; Compr. Rev. Food Sci. Food Saf. 13 (2014) 578–596. DOI: 10.1111/1541-4337.1207110.1111/1541-4337.12071DOI öffnenSearch in Google Scholar

30. Mao, D., J. Zhang, and G. Yang: Effects of Moisture Content on Flavor Components of Flue-Cured Tobacco Under Ultra High Pressure Treatment; Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering; 23 (2007) 211–216.Search in Google Scholar

31. Tobacco Industry Standard of People’s Republic of China: Tobacco and Tobacco Products - The Sensory Evaluation Methods; Y.T. 138-1998, Beijing China Standard Press, Beijing, China, 1998.Search in Google Scholar

32. Tobacco Industry Standard of People’s Republic of China: Tobacco and Tobacco Products - Determination of Water Soluble Sugars - Continuous Flow Method; Y.T. 159-2002, Beijing China Standard Press, Beijing, China, 2002.Search in Google Scholar

33. Tobacco Industry Standard of People’s Republic of China: Tobacco and Tobacco Products - Determination of Total Alkaloids - Continuous Flow Method; Y.T. 160-2002, Beijing China Standard Press, Beijing, China, 2002.Search in Google Scholar

34. Tobacco Industry Standard of People’s Republic of China: Tobacco and Tobacco Products - Determination of Total Nitrogen - Continuous Flow Method; Y.T. 161-2002, Beijing China Standard Press, Beijing, China, 2002.Search in Google Scholar

35. Tobacco Industry Standard of People’s Republic of China: Determination of Apparent Density, True Density and Inner Pore Volume of Cut Tobacco; Y.T. 473-2013, Beijing China Standand Press, Beijing, China, 2013.Search in Google Scholar

36. Hendrickx, M., L. Ludikhuyze, I. Van den Broeck, and C. Weemaes: Effects of High Pressure on Enzymes Related to Food Quality; Trends Food Sci. Technol. 9 (1998) 197–203.10.1016/S0924-2244(98)00039-9DOI öffnenSearch in Google Scholar

37. Schroeder, J.I., G.J. Allen, V. Hugouvieux, J.M. Kwak, and D. Waner: Guard Cell Signal Transduction; Ann. Rev. Plant Physiol. Plant Mol. Biol. 52 (2001) 627–658. DOI: 10.1146/annurev.arplant.52.1.62710.1146/annurev.arplant.52.1.62711337411DOI öffnenSearch in Google Scholar

38. Melotto, M., W. Underwood, J. Koczan, K. Nomura, and S.Y. He: Plant Stomata Function in Innate Immunity Against Bacterial Invasion; Cell 126 (2006) 969–980. DOI: 10.1016/j.cell.2006.06.05410.1016/j.cell.2006.06.05416959575DOI öffnenSearch in Google Scholar

39. Fan, L.M., Z. Zhao, and S.M. Assmann: Guard Cells: A Dynamic Signaling Model; Curr. Opin. Plant Biol. 7 (2004) 537–546. DOI: 10.1016/j.pbi.2004.07.00910.1016/j.pbi.2004.07.00915337096DOI öffnenSearch in Google Scholar

40. Brodersen, C.R. and A.B. Roddy: New Frontiers in the Three-Dimensional Visualization of Plant Structure and Function; Am. J. Bot. 103 (2016) 184–188. DOI: 10.3732/ajb.150053210.3732/ajb.150053226865119DOI öffnenSearch in Google Scholar

41. Kuroki, S., S. Oshita, I. Sotome, Y. Kawagoe, and Y. Seo: Visualization of 3-D Network of Gas-Filled Intercellular Spaces in Cucumber Fruit after Harvest; Postharvest Biol. Technol. 33 (2004) 255–262. DOI: 10.1016/j.postharvbio.2004.04.00210.1016/j.postharvbio.2004.04.002DOI öffnenSearch in Google Scholar

42. Bigourd, D., A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali: Multiple Component Analysis of Cigarette Smoke Using THz Spectroscopy, Comparison with Standard Chemical Analytical Methods; Appl. Phys. B 86 (2007) 579–586. DOI: 10.1007/s00340-006-2495-410.1007/s00340-006-2495-4DOI öffnenSearch in Google Scholar

43. Png, G.M., R.J. Falconer, B.M. Fischer, H.A. Zakaria, S.P. Mickan, A.P. Middelberg, and D. Abbott: Terahertz Spectroscopic Differentiation of Microstructures in Protein Gels; Opt. Express 17 (2009) 13102–13115. DOI: 10.1364/OE.17.01310210.1364/OE.17.01310219654715DOI öffnenSearch in Google Scholar

44. Su, T.-F., X.-F. Jia, G.-Z. Zhao, P. Han, Y.-J. Wang, Y. Li, B. Zhou, C.-P. Song, J.-F. Chang, and C.R. Gong: Characterization of Original and Expanded Leaf-Roots of Tobacco by Terahertz Spectroscopy and X-Ray Microanalysis; Mater. Lett. 62 (2008) 277–2782. DOI: 10.1016/j.matlet.2008.01.04310.1016/j.matlet.2008.01.043DOI öffnenSearch in Google Scholar

45. Fang, X., H.X. Wei, M. Kamran, J.Y. Ma, H.Y. Zhao, X.F. Han, and Qiu: Surface Plasmon Polaritons Assisted Diffraction in Metal Films with Subwave-length Hole Array; J. Phys. Chem. Solids 69 (2008) 3093–3095. DOI: 10.1016/j.jpcs.2008.06.09910.1016/j.jpcs.2008.06.099DOI öffnenSearch in Google Scholar

46. Várhegyi, G., Z. Czégény, E. Jakab, K. McAdam, and C. Liu: Tobacco Pyrolysis. Kinetic Evaluation of Thermogravimetric–Mass Spectrometric Experiments; J. Anal. Appl. Pyrolysis 86 (2009) 310–322. DOI: 10.1016/j.jaap.2009.08.00810.1016/j.jaap.2009.08.008DOI öffnenSearch in Google Scholar

47. Czégény, Z., M. Blazsó, G. Várhegyi, E. Jakab, C. Liu, and L. Nappi: Formation of Selected Toxicants from Tobacco under Different Pyrolysis Conditions; J. Anal. Appl. Pyrolysis 85 (2009) 47–53. DOI: 10.1016/j.jaap.2008.10.00110.1016/j.jaap.2008.10.001DOI öffnenSearch in Google Scholar

48. Senneca, O., R. Chirone, P. Salatino, and L. Nappi: Patterns and Kinetics of Pyrolysis of Tobacco under Inert and Oxidative Conditions; J. Anal. Appl. Pyrolysis 79 (2007) 227–233. DOI: 10.1016/j.jaap.2006.12.01110.1016/j.jaap.2006.12.011DOI öffnenSearch in Google Scholar

49. Qi, X., Q. Li, H. Zhang, and H. Xin: Thermodynamic Characteristics of Coal Reaction Under Low Oxygen Concentration Conditions; J. Energy Inst. 90 (2017) 544–555. DOI: 10.1016/j.joei.2016.05.00710.1016/j.joei.2016.05.007DOI öffnenSearch in Google Scholar

50. Mitsui, K., F. David, E. Dumont, N. Ochiai, H. Tamura, and P. Sandra: LC Fractionation Followed by Pyrolysis GC-MS for the In-Depth Study of Aroma Compounds Formed During Tobacco Combustion; J. Anal. Appl. Pyrolysis 116 (2015) 68–74. DOI: 10.1016/j.jaap.2015.10.00410.1016/j.jaap.2015.10.004DOI öffnenSearch in Google Scholar

51. Baker, R.R. and L.J. Bishop: The Pyrolysis of Tobacco Ingredients; J. Anal. Appl. Pyrolysis 71 (2004) 223–311. DOI: 10.1016/S0165-2370(03)00090-110.1016/S0165-2370(03)00090-1DOI öffnenSearch in Google Scholar

52. Anca-Couce, A.: Reaction Mechanisms and Multi-Scale Modelling of Lignocellulosic Biomass Pyrolysis; Prog. Energy Combust. Sci. 53 (2016) 41–79. DOI: 10.1016/j.pecs.2015.10.00210.1016/j.pecs.2015.10.002DOI öffnenSearch in Google Scholar

53. Tripathi, M., J.N. Sahu, and P. Ganesan: Effect of Process Parameters on Production of Biochar from Biomass Waste Through Pyrolysis: A Review; Renew. Sust. Energy Rev. 55 (2016) 467–481. DOI: 10.1016/j.rser.2015.10.12210.1016/j.rser.2015.10.122DOI öffnenSearch in Google Scholar

54. Sharma, A., V. Pareek, and D. Zhang: Biomass Pyrolysis - A Review of Modelling, Process Parameters and Catalytic Studies; Renew. Sust. Energy Rev. 50 (2015) 1081–1096. DOI: 10.1016/j.rser.2015.04.19310.1016/j.rser.2015.04.193DOI öffnenSearch in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo