Uneingeschränkter Zugang

A study case for the analysis of asymptotic expansions beyond the tQSSA for inhibitory mechanisms in enzyme kinetics.


Zitieren

1. J. Berg, J. Tymoczko, and L. Stryer, Biochemistry. W. H. Freeman New York, 2002.Search in Google Scholar

2. J. Murray, Mathematical Biology: An introduction. Springer-Verlag New York, 2002.Search in Google Scholar

3. J. Borghans, R. de Boer, and L. Segel, Extending the quasi-steady state approximation by changing variables, Bull.Math.Biol., vol. 58, pp. 43–63, 1996.10.1007/BF02458281Search in Google Scholar

4. A. M. Bersani, E. Bersani, G. Dell’Acqua, and M. G. Pedersen, New trends and perspectives in nonlinear intracellular dynamics: one century from michaelis–menten paper, Continuum Mechanics and Thermodynamics, vol. 27, no. 4, pp. 659–684, 2015.10.1007/s00161-014-0367-4Search in Google Scholar

5. A. Cornish-Bowden, One hundred years of michaelis-menten kinetics, Perspectives in Science, vol. 4, pp. 3 – 9, 2015.10.1016/j.pisc.2014.12.002Search in Google Scholar

6. F. G. Heineken, H. M. Tsuchiya, and R. Aris, On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics, Math. Biosc., vol. 1, pp. 95–11, 1967.10.1016/0025-5564(67)90029-6Search in Google Scholar

7. L. A. Segel and M. Slemrod, The quasi steady-state assumption: a case study in pertubation., Siam Rev., vol. 31, pp. 446–477, 1989.10.1137/1031091Search in Google Scholar

8. G. Dell’Acqua and A. M. Bersani, A perturbation solution of michaelis–menten kinetics in a “total” framework, Journal of Mathematical Chemistry, vol. 50, no. 5, pp. 1136–1148, 2012.Search in Google Scholar

9. J. Carr, Applications of Center Manifold Theory. Springer-Verlag New York, Heidelberg, Berlin, 1981.Search in Google Scholar

10. S. Wiggins, Normally Hyperbolic Invariant Manifolds in Dynamical Systems, vol. 105. Springer-Verlag New York, 1994.10.1007/978-1-4612-4312-0Search in Google Scholar

11. S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, vol. 2. Springer-Verlag New York, 2003.Search in Google Scholar

12. F. C. Hoppensteadt, Singular perturbations on the infinite interval, Transactions of the American Mathematical Society, vol. 123, no. 2, pp. 521–535, 1966.10.1090/S0002-9947-1966-0194693-9Search in Google Scholar

13. A. Tikhonov, On the dependence of the solutions of differential equations on a small parameter (in russian), Mat. Sb. (N.S.), vol. 22, no. 2, pp. 193 – 204, 1948.Search in Google Scholar

14. A. Tikhonov, On a system of differential equations containing parameters (in russian), Mat. Sb. (N.S.), vol. 27, pp. 147–156, 1950.Search in Google Scholar

15. A. Tikhonov, Systems of differential equations containing small parameters in the derivatives (in russian), Mat. Sb. (N.S.), vol. 31, no. 3, pp. 575–586, 1952.Search in Google Scholar

16. A. B. Vasil’eva, Asymptotic behaviour of solutions to certain problems involving non-linear differential equations containing a small parameter multiplying the highest derivatives (in russian), Russian Mathematical Surveys, vol. 18, no. 3, pp. 13–84, 1963.10.1070/RM1963v018n03ABEH001137Search in Google Scholar

17. W. Wasov, Asymptotic Expansions for Ordinary Di erential Equations. Wiley-InterScience, 1965.Search in Google Scholar

18. I. Dvořák and J.Šiška, Analysis of metabolic systems with complex slow and fast dynamics, Bulletin of Mathematical Biology, vol. 51, no. 2, pp. 255–274, 1989.10.1007/BF02458446Search in Google Scholar

19. A. Kumar and K. Josić, Reduced models of networks of coupled enzymatic reactions, Journal of Theoretical Biology, vol. 278, no. 1, pp. 87 – 106, 2011.10.1016/j.jtbi.2011.02.02521377474Search in Google Scholar

20. N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, Journal of Di erential Equations, vol. 31, no. 1, pp. 53–98, 1979.10.1016/0022-0396(79)90152-9Search in Google Scholar

21. A. J. Roberts, Model emergent dynamics in complex systems. SIAM, 2015.Search in Google Scholar

22. B. O. Palsson and E. N. Lightfoot, Mathematical modelling of dynamics and control in metabolic networks. i. on michaelis-menten kinetics, Journal of Theoretical Biology, vol. 111, no. 2, pp. 273 – 302, 1984.10.1016/S0022-5193(84)80211-8Search in Google Scholar

23. B. O. Palsson, R. Jamier, and E. N. Lightfoot, Mathematical modelling of dynamics and control in metabolic networks. ii. simple dimeric enzymes, Journal of Theoretical Biology, vol. 111, no. 2, pp. 303 – 321, 1984.10.1016/S0022-5193(84)80212-XSearch in Google Scholar

24. B. O. Palsson, H. Palsson, and E. N. Lightfoot, Mathematical modelling of dynamics and control in metabolic networks. iii. linear reaction sequences, Journal of Theoretical Biology, vol. 113, no. 2, pp. 231 – 259, 1985.10.1016/S0022-5193(85)80226-5Search in Google Scholar

25. B. O. Palsson, On the dynamics of the irreversible michaelis-menten reaction mechanism, Chemical Engineering Science, vol. 42, no. 3, pp. 447 – 458, 1987.10.1016/0009-2509(87)80007-6Search in Google Scholar

26. A. Bersani, A. Borri, A. Milanesi, and P. Vellucci, Tihonov theory and center manifolds for inhibitory mechanisms in enzyme kinetics, Communications in Applied and Industrial Mathematics, vol. 8, no. 1, pp. 81–102, 2017.10.1515/caim-2017-0005Search in Google Scholar

27. S. Schnell and C. Mendoza, Time-dependent closed form solutions for fully competitive enzyme reactions, Bulletin of Mathematical Biology, vol. 62, no. 2, pp. 321–336, 2000.10.1006/bulm.1999.0156Search in Google Scholar

28. S. Schnell and C. Mendoza, Closed form solution for time-dependent enzyme kinetics, Journal of Theoretical Biology, vol. 187, no. 2, pp. 207 – 212, 1997.10.1006/jtbi.1997.0425Search in Google Scholar

29. M. G. Pedersen, A. M. Bersani, and E. Bersani, The total quasi-steady-state approximation for fully competitive enzyme reactions, Bulletin of Mathematical Biology, vol. 69, no. 1, pp. 433–457, 2006.10.1007/s11538-006-9136-2Search in Google Scholar

30. M. G. Pedersen, A. M. Bersani, and E. Bersani, Quasi steady-state approximations in complex intra-cellular signal transduction networks – a word of caution, Journal of Mathematical Chemistry, vol. 43, no. 4, pp. 1318–1344, 2008.Search in Google Scholar

31. S. Schnell and P. Maini, Enzyme kinetics far from the standard quasi-steady-state and equilibrium approximations, Mathematical and Computer Modelling, vol. 35, no. 1-2, pp. 137–144, 2002.10.1016/S0895-7177(01)00156-XSearch in Google Scholar

32. C.-C. Lin and L. A. Segel, Mathematics applied to deterministic problems in the natural sciences, vol. 1. Siam, 1988.Search in Google Scholar

33. M. G. Pedersen, A. M. Bersani, E. Bersani, and G. Cortese, The total quasi-steady-state approximation for complex enzyme reactions, Mathematics and Computers in Simulation, vol. 79, no. 4, pp. 1010 – 1019, 2008.Search in Google Scholar

34. A. Tzafriri and E. Edelman, The total quasi-steady-state approximation is valid for reversible enzyme kinetics, Journal of Theoretical Biology, vol. 226, no. 3, pp. 303 – 313, 2004.10.1016/j.jtbi.2003.09.00614643644Search in Google Scholar

35. M. Sabouri-Ghomi, A. Ciliberto, S. Kar, B. Novak, and J. J. Tyson, Antagonism and bistability in protein interaction networks, Journal of Theoretical Biology, vol. 250, no. 1, pp. 209 – 218, 2008.10.1016/j.jtbi.2007.09.00117950756Search in Google Scholar

36. S. Rubinow and J. L. Lebowitz, Time-dependent michaelis-menten kinetics for an enzyme-substrate-inhibitor system, Journal of the American Chemical Society, vol. 92, no. 13, pp. 3888–3893, 1970.Search in Google Scholar

37. A. Bersani, E. Bersani, and L. Mastroeni, Deterministic and stochastic models of enzymatic networks-applications to pharmaceutical research, Computers & Mathematics with Applications, vol. 55, no. 5, pp. 879 – 888, 2008. Modeling and Computational Methods in Genomic Sciences.10.1016/j.camwa.2006.12.092Search in Google Scholar

38. A. Ciliberto, F. Capuani, and J. J. Tyson, Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation, PLOS Computational Biology, vol. 3, pp. 1–10, 03 2007.10.1371/journal.pcbi.0030045182870517367203Search in Google Scholar

39. M. G. Pedersen and A. M. Bersani, Introducing total substrates simplifies theoretical analysis at non-negligible enzyme concentrations: pseudo first-order kinetics and the loss of zero-order ultrasensitivity, Journal of Mathematical Biology, vol. 60, no. 2, pp. 267–283, 2010.10.1007/s00285-009-0267-619333602Search in Google Scholar

40. C. Kwang-Hyun, S. Sung-Young, K. Hyun-Woo, O. Wolkenhauer, B. McFerran, and W. Kolch, Mathematical modeling of the influence of rkip on the erk signaling pathway, in Computational Methods in Systems Biology (C. Priami, ed.), pp. 127–141, Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.10.1007/3-540-36481-1_11Search in Google Scholar

41. S. MacNamara and K. Burrage, Krylov and steady-state techniques for the solution of the chemical master equation for the mitogen-activated protein kinase cascade, Numerical Algorithms, vol. 51, no. 3, pp. 281–307, 2009.10.1007/s11075-008-9239-ySearch in Google Scholar

42. G. Dell’Acqua and A. M. Bersani, Quasi-steady state approximations and multistability in the double phosphorylation-dephosphorylation cycle, in Biomedical Engineering Systems and Technologies (A. Fred, J. Filipe, and H. Gamboa, eds.), pp. 155–172, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.10.1007/978-3-642-29752-6_12Search in Google Scholar

43. G. Dell’Acqua and A. M. Bersani, Bistability and the complex depletion paradox in the double phosphorylation-dephosphorylation cycle., in BIOINFORMATICS, pp. 55–65, 2011.Search in Google Scholar

44. A. M. Bersani, G. Dell’Acqua, and G. Tomassetti, On stationary states in the double phosphorylation-dephosphorylation cycle, AIP Conference Proceedings, vol. 1389, no. 1, pp. 1208–1211, 2011.Search in Google Scholar

45. A. Bersani, A. Borri, A. Milanesi, G. Tomassetti, and P. Vellucci, Asymptotic analysis of the double phosphorylation mechanism, in a tqssa framework. in preparation.Search in Google Scholar

46. A. Bersani, A. Borri, A. Milanesi, G. Tomassetti, and P. Vellucci, Uniform asymptotic expansions beyond the tqssa for the goldbeter-koshland switch. in preparation.Search in Google Scholar

47. A. R. Tzafriri and E. R. Edelman, Quasi-steady-state kinetics at enzyme and substrate concentrations in excess of the michaelis-menten constant, Journal of Theoretical Biology, vol. 245, no. 4, pp. 737 – 748, 2007.10.1016/j.jtbi.2006.12.00517234216Search in Google Scholar

48. H. P. Fischer, Mathematical modeling of complex biological systems: from parts lists to understanding systems behavior, Alcohol Research & Health, vol. 31, no. 1, p. 49, 2008.Search in Google Scholar

eISSN:
2038-0909
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Mathematik, Numerik und wissenschaftliches Rechnen, Angewandte Mathematik