Uneingeschränkter Zugang

Novel quinolines carrying pyridine, thienopyridine, isoquinoline, thiazolidine, thiazole and thiophene moieties as potential anticancer agents


Zitieren

1. H. Frankish, 15 Million new cancer cases per year by 2020, says WHO, Lancet361 (2003) 1278–1287; DOI: 10.1016/S0140-6736(03)13038-3.10.1016/S0140-6736(03)13038-3Search in Google Scholar

2. K. Kubo, T. Shimizu, S. I. Ohyama, H. Murooka, A. Iwai, K. Nakamura, K. Hasegawa, Y. Kobayashi, N. Takahashi, K. Takahashi, S. Kato, T. Izawa and T. Isoe, Novel potent orally active selective VEGFR-2 tyrosine kinase inhibitors: synthesis, structure-activity relationships, and antitumor activities of N-phenyl-N’-{4-(4-quinolyloxy)phenyl}-ureas, J. Med. Chem. 48 (2005) 1359–1366; DOI: 10.1021/jm030427r.10.1021/jm030427rSearch in Google Scholar

3. R. O’Connor, Mdm–mediated ubiquitylation: P53 and beyond, a review of mechanisms of circumvention and modulation of chemotherapeutic drug resistance, Curr. Cancer Drug Targets9 (2009) 273–280; DOI: 10.2174/156800909788166583.10.2174/156800909788166583Search in Google Scholar

4. C. Hu, V. R Solomon and G. L. Ulibarri, The efficacy and selectivity of tumor cell killing by AKT inhibitors are substantially increased by chloroquin, Bioorg. Med. Chem. 16 (2008) 7888–7893; DOI: 10.1016/j.bmc.2008.07.076.10.1016/j.bmc.2008.07.076Search in Google Scholar

5. Y. C. Mayur, G. J. Peters, V. V. Prasad, C. Lemo and N. K. Sathish, Design of new drug molecules to be used in reversing multidrug resistance in cancer, Curr. Cancer Drug Targets9 (2009) 298–306; DOI: 10.2174/156800909788166619.10.2174/156800909788166619Search in Google Scholar

6. M. G. Ferlin, B. Gatto, G. Chiarelotto and M. Palumbo, Pyrroloquinoline derivatives as potential antineoplastic drugs, Bioorg. Med. Chem.8 (2000) 1415–1422; DOI: 10.1016/S0968-0896(00)00060-2.10.1016/S0968-0896(00)00060-2Search in Google Scholar

7. M. S. Alsaid, M. S. Bashandy, S. I. Al-Qasoumi and M. M. Ghorab, Anti-breast cancer activity of some novel 1,2-dihydropyridine, thiophene and thiazole derivatives, Eur. J. Med. Chem.46 (2011) 137–141; DOI: 10.1016/j.ejmech.2010.10.024.10.1016/j.ejmech.2010.10.024Search in Google Scholar

8. S. Pédeboscq, D. Gravier, F. Casadebaig, G. Hou, A. Gissot, F. De. Giorgi, F. Ichas, J. Cambar and J. P. Pometan, Synthesis and study of antiproliferative activity of novel thienopyrimidines on glioblastoma cells, Eur. J. Med. Chem.45 (2010) 2473–2479; DOI:10.1016/j.ejmech.-2010.02.032.Search in Google Scholar

9. R. L. Weinkauf, A. Y. Chen, C. Yu, L. Liu, L. Barrows and E. J. LaVoie, Antineoplastic activity of benzimidazo[1,2-b] isoquinolines, indolo[2,3-b]quinolines, and pyridocarbazoles, Bioorg. Med. Chem.2 (1994) 781–786; DOI: 10.1016/S0968-0896(00)82177-X.10.1016/S0968-0896(00)82177-XSearch in Google Scholar

10. S. Li, Z. Yao, Y. Zhao, W. Chen, H. Wang, X. Kuang, W. Zhan, S. Yao, S. Yu and W. Hu, Design, synthesis and biological evaluation of novel acrylamide analogues as inhibitors of BCR-ABL kinase, Bioorg. Med. Chem. Lett. 22 (2012) 5279–5282; DOI: 10.1016/j.bmcl.2012.06.044.10.1016/j.bmcl.2012.06.04422789429Search in Google Scholar

11. F. E. Onen-Bayram, I. Durmaz, D. Scherman, J. Herscovici and R. Cetin-Atalay, A novel thiazolidine compound induces caspase-9 dependent apoptosis in cancer cells, Bioorg. Med. Chem.20 (2012) 5094–5102; DOI: 10.1016/j.bmc.2012.07.016.10.1016/j.bmc.2012.07.01622867707Search in Google Scholar

12. G. J. Atwell, C. D. Bos, B. C. Baguley and W. A. Denny, Potential antitumor agents. 56. “Minimal” DNA-intercalating ligands as antitumor drugs: phenylquinoline-8-carboxamides, J. Med. Chem. 3 (1988) 1048–1052; DOI: 10.1021/jm00400a029.10.1021/jm00400a029Search in Google Scholar

13. G. J. Atwell, B. C. Baguley and W. A. Denny, Potential antitumor agents. 57. 2-phenylquinoline-8-carboxamides as minimal DNA-intercalating antitumor agents with in vivo solid tumor activity, J. Med. Chem. 32 (1989) 396–401; DOI: 10.1021/jm00122a018.10.1021/jm00122a018Search in Google Scholar

14. T. Suzuki, N. Fukazawa, K. San-nohe, W. Sato, O. Yano and T. Tsuruo, Structure activity relationship of newly synthesized quinoline derivatives for reversal of multidrug resistance in cancer, J. Med. Chem. 40 (1997) 2047–2052; DOI: 10.1021/jm960869l.10.1021/jm960869lSearch in Google Scholar

15. Y. H. Wang, T. Motoji, S. Motomura, N. Shiozaki, T. Tsuruo and H. Mizoguchi, Multi-drug resistance-reversing agent, on acute myelogenous leukaemic blasts and K562 cells resistant to adriamycin cell line, Eur. J. Haematol. 58 (1997) 186–194; DOI: 10.1111/j.1600-0609.1997.tb00946.x.10.1111/j.1600-0609.1997.tb00946.xSearch in Google Scholar

16. H. Zhao, Y. Cai, S. Santi, R. Lafrenie and H. Lee, Chloroquine-mediated radiosensitization is due to the destabilization of the lysosomal membrane and subsequent induction of cell death by necrosis, Radiat. Res. 164 (2005) 250–257; DOI: 10.1667/RR3436.1.10.1667/RR3436.1Search in Google Scholar

17. H. Zhang, V. R. Solomon, C. Hu, G. Ulibarri and H. Lee, Synthesis and in vitro cytotoxicity evaluation of 4-aminoquinoline derivatives, Biomed. Pharmacother.62 (2008) 65–69; DOI: 10.1016/j.biopha.2007.04.007.10.1016/j.biopha.2007.04.007Search in Google Scholar

18. V. R. Solomon and H. Lee, Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies, Eur. J. Pharmacol. 625 (2009) 220–233; DOI: 10.1016/j.ejphar.2009.06.063.10.1016/j.ejphar.2009.06.063Search in Google Scholar

19. M. S. Al-Said, M. G. El-Gazzar, M. S. Al-Dosari and M. M. Ghorab, Synthesis, anticancer activity and radiosensitizing evaluation of some new 2-pyridone derivatives, Arzneimittel-Forsch.62 (2012) 149–156; DOI: 10.1055/s-0031-1299695.10.1055/s-0031-1299695Search in Google Scholar

20. P. Fossa, G. Menozzi, P. Dorigo, M. Floreani and L. Mosti, Synthesis and pharmacological characterization of functionalized 2-pyridones structurally related to the cardiotonic agent milrinone, Bioorg. Med. Chem.11 (2003) 4749–4759; DOI: 10.1016/S0968-0896(03)00528-5.10.1016/S0968-0896(03)00528-5Search in Google Scholar

21. W. Chen, P. Zhan, D. Rai, E. De Clercq, C. Pannecouque, J. Balzarini, Z. Zhou, H. Liu and X. Liu, Discovery of 2-pyridone derivatives as potent HIV-1 NNRTIs using molecular hybridization based on crystallographic overlays, Bioorg. Med. Chem.22 (2014) 1863–1872; DOI: 10.1016/j.bmc.2014.01.054.10.1016/j.bmc.2014.01.05424581546Search in Google Scholar

22. M. M. Ghorab, Z. H. Ismail, M. Abdalla and A. A. Radwan, Synthesis, antimicrobial evaluation and molecular modelling of novel sulfonamides carrying a biologically active quinazoline nucleus, Arch. Pharm. Res. 36 (2013) 660–670; DOI: 10.1007/s12272-013-0094-6.10.1007/s12272-013-0094-623529860Search in Google Scholar

23. M. S. Al-Dosari, M. M. Ghorab, M. S. Alsaid and M. Y. Nissan, Discovering some novel 7-chloroquinolines carrying a biologically active benzenesulfonamide moiety as a new class of anticancer agents, Chem. Pharm. Bull. 61 (2013) 50–58; DOI: 10.1248/cpb.c12-00812.10.1248/cpb.c12-0081223302586Search in Google Scholar

24. M. S. Alsaid, M. S. Bashandy and M. M. Ghorab, Novel quinolines bearing a biologically active trimethoxyphenyl moiety as a new class of antitumor agents, Arzneimittel-Forsch. 61 (2011) 527–531; DOI: 10.1055/s-0031-1296239.10.1055/s-0031-129623922029230Search in Google Scholar

25. M. S. Bashandy, M. S. Al-Said, S. I. Al-Qasoumi and M. M. Ghorab, Design and synthesis of some novel hydrazide, 1, 2-dihydropyridine, chromene derivatives carrying biologically active sulfone moieties with potential anticancer activity, Arzneimittel-Forsch. 61 (2011) 521–526; DOI: 10.1055/s-0031-1296238.10.1055/s-0031-129623822029229Search in Google Scholar

26. M. M. Ghorab, M. S. Al-Said and E. M. El-Hossary, In vitro cytotoxic evaluation of some new heterocyclic sulfonamide derivatives, J. Heterocycl. Chem.48 (2011) 563–571; DOI: 10.1002/jhet.619.10.1002/jhet.619Search in Google Scholar

27. M. S. Al-Said, M. S. Bashandy, S. I. Al-Qasoumi and M. M. Ghorab, Anti-breast cancer activity of some novel 1,2-dihydropyridine, thiophene and thiazole derivatives, Eur. J. Med. Chem. 46 (2011) 137–141; DOI: 10.1016/j.ejm-ech.2010.10.024.Search in Google Scholar

28. M. M. Ghorab, F. A. Ragab, H. I. Heiba, R. K. Arafa and E. M. El-Hossary, Docking study, in vitro anticancer screening and radiosensitizing evaluation of some new fluorine-containing quinoline and pyrimidoquinoline derivatives bearing a sulfonamide moiety, Med. Chem. Res.20 (2011) 388–400; DOI: 10.1007/s00044-010-9332-3.10.1007/s00044-010-9332-3Search in Google Scholar

29. P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenny and M. R. Boyd, New colorimetric cytotoxicity assay for anticancer-drug screening, J. Natl. Cancer. Inst. 82 (1990) 1107–1112; DOI: 10.1093/jnci/82.13.1107.10.1093/jnci/82.13.11072359136Search in Google Scholar

30. M. M. Ghorab, M. S. Alsaid, H. A. Ghabour and H.-K. Fun, Synthesis, crystal structure and antitumor activity of novel 2-cyano-N-(quinolin-3-yl) acetamide, Asian J. Chem. 26 (2014) 7389–7392; DOI:10.14233/ajchem.2014.17050.10.14233/ajchem.2014.17050Search in Google Scholar

eISSN:
1846-9558
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Pharmazie, andere