Estimation of Morphometric Parameters in Lakes Based on Satellite Imagery Data: Implications of Relationships Between Lakes in the Arid Region of Western Mongolia, Central Asia
This work is licensed under the Creative Commons Attribution 4.0 International License.
Ahmed I.A., Baig M.R.I., Talukdar S., Asgher M.S., Usmani T.M., Ahmed S., Rahman A., 2021. Lake water volume calculation using time series LANDSAT satellite data: A geospatial analysis of Deepor Beel Lake, Guwahati. Frontiers in Engineering and Built Environment 1(1): 107–130. DOI 10.1108/FEBE-02-2021-0009.AhmedI.A.BaigM.R.I.TalukdarS.AsgherM.S.UsmaniT.M.AhmedS.RahmanA.2021. Lake water volume calculation using time series LANDSAT satellite data: A geospatial analysis of Deepor Beel Lake, Guwahati. Frontiers in Engineering and Built Environment1(1): 107–130. DOI 10.1108/FEBE-02-2021-0009.Open DOISearch in Google Scholar
Amgalan M., Matsumoto T., Ulaanbaatar T., Nandintsetseg N., Erdenesukh S., Sandelger D., Altanbold E., 2020. Estimation of evaporation from Ogii Lake using the energy budget method. Journal of Japan Society of Civil Engineers, Ser. G (Environmental Research) 76(5): 301–309. DOI 10.2208/jscejer.76.5_I_301.AmgalanM.MatsumotoT.UlaanbaatarT.NandintsetsegN.ErdenesukhS.SandelgerD.AltanboldE.2020. Estimation of evaporation from Ogii Lake using the energy budget method. Journal of Japan Society of Civil Engineers, Ser. G (Environmental Research)76(5): 301–309. DOI 10.2208/jscejer.76.5_I_301.Open DOISearch in Google Scholar
Bacanin N., Bezdan T., Tuba E., Strumberger I., Tuba M., 2020. Optimizing convolutional neural network hyperparameters by enhanced swarm intelligence metaheuristics. Algorithms 13(3): 67. DOI 10.3390/a13030067.BacaninN.BezdanT.TubaE.StrumbergerI.TubaM.2020. Optimizing convolutional neural network hyperparameters by enhanced swarm intelligence metaheuristics. Algorithms13(3): 67. DOI 10.3390/a13030067.Open DOISearch in Google Scholar
Baterdene A., Nagao S., Zorigt B., Ochir A., Fukushi K., Davaasuren D., Gankhurel B., Munkhsuld E., Tsetsgee S., Yunden A., 2022. Seasonal variation and vertical distribution of inorganic nutrients in a small artificial lake, Lake Bulan, in Mongolia. Water 14(12): 1916. DOI 10.3390/w14121916.BaterdeneA.NagaoS.ZorigtB.OchirA.FukushiK.DavaasurenD.GankhurelB.MunkhsuldE.TsetsgeeS.YundenA.2022. Seasonal variation and vertical distribution of inorganic nutrients in a small artificial lake, Lake Bulan, in Mongolia. Water14(12): 1916. DOI 10.3390/w14121916.Open DOISearch in Google Scholar
Bijeesh T.V., Narasimhamurthy K.N., 2020. Surface water detection and delineation using remote sensing images: A review of methods and algorithms. Sustainable Water Resources Management 6(4): 68. DOI 10.1007/s40899-020-00425-4.BijeeshT.V.NarasimhamurthyK.N.2020. Surface water detection and delineation using remote sensing images: A review of methods and algorithms. Sustainable Water Resources Management6(4): 68. DOI 10.1007/s40899-020-00425-4.Open DOISearch in Google Scholar
Busker T., de Roo A., Gelati E., Schwatke C., Adamovic M., Bisselink B., Pekel J.F., Cottam A., 2019. A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrology and Earth System Sciences 23(2): 669–690. DOI 10.5194/hess-23-669-2019.BuskerT.de RooA.GelatiE.SchwatkeC.AdamovicM.BisselinkB.PekelJ.F.CottamA.2019. A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrology and Earth System Sciences23(2): 669–690. DOI 10.5194/hess-23-669-2019.Open DOISearch in Google Scholar
Chen Y., Zhang X., Fang G., Li Z., Wang F., Qin J., Sun F., 2020. Potential risks and challenges of climate change in the arid region of northwestern China. Regional Sustainability 1(1): 20–30. DOI10.1016/j.regsus.2020.06.003.ChenY.ZhangX.FangG.LiZ.WangF.QinJ.SunF.2020. Potential risks and challenges of climate change in the arid region of northwestern China. Regional Sustainability1(1): 20–30. DOI10.1016/j.regsus.2020.06.003.Open DOISearch in Google Scholar
Chipman J.W., 2019. A multisensor approach to satellite monitoring of trends in lake area, water level, and volume. Remote Sensing 11(2): 158. DOI 10.3390/rs11020158.ChipmanJ.W.2019. A multisensor approach to satellite monitoring of trends in lake area, water level, and volume. Remote Sensing11(2): 158. DOI 10.3390/rs11020158.Open DOISearch in Google Scholar
Davaa D., 2015. Surface water regime and resources in Mongolia. Admon Printing, Ulaanbaatar: 120–122.DavaaD.2015. Surface water regime and resources in Mongolia. Admon Printing, Ulaanbaatar: 120–122.Search in Google Scholar
Davaa G., 2018. Assessment of the water resources of Mongolian lakes based on land and satellite data, and a feasibility study for continuous monitoring. Institute of Water, Climate and Environmental Research and Information, Consulting Services Report, Ulaanbaatar: 33–54.DavaaG.2018. Assessment of the water resources of Mongolian lakes based on land and satellite data, and a feasibility study for continuous monitoring. Institute of Water, Climate and Environmental Research and Information, Consulting Services Report, Ulaanbaatar: 33–54.Search in Google Scholar
Dingjun L., Altanbold E., Batsuren D., Tuvshin G., Yumchmaa G., Boldbayar R., Gansukh Y., 2023. Changes in the area of lakes in different natural regions of Mongolia and climate effect. Geographical Issues 23(01): 4–21. DOI 10.22353/.v23i01.1571.DingjunL.AltanboldE.BatsurenD.TuvshinG.YumchmaaG.BoldbayarR.GansukhY.2023. Changes in the area of lakes in different natural regions of Mongolia and climate effect. Geographical Issues23(01): 4–21. DOI 10.22353/.v23i01.1571.Open DOISearch in Google Scholar
Dorjsuren B., Yan D., Wang H., Chonokhuu S., Enkhbold A., Davaasuren D., Girma A., Abiyu A., Jing L., Gedefaw M., 2018. Observed trends of climate and land cover changes in Lake Baikal basin. Environmental Earth Sciences 77: 1–12. DOI 10.1007/s12665-018-7812-9.DorjsurenB.YanD.WangH.ChonokhuuS.EnkhboldA.DavaasurenD.GirmaA.AbiyuA.JingL.GedefawM.2018. Observed trends of climate and land cover changes in Lake Baikal basin. Environmental Earth Sciences77: 1–12. DOI 10.1007/s12665-018-7812-9.Open DOISearch in Google Scholar
Dorjsuren B., Zemtsov V.A., Batsaikhan N., Demberel O., Yan D., Hongfei Z., Yadamjav O., Chonokhuu S., Enkhbold A., Ganzorig B., Bavuu E., 2024. Trend analysis of hydro-climatic variables in the Great Lakes Depression region of Mongolia. Journal of Water and Climate Change 15(3): 940–957. DOI 10.2166/wcc.2024.379.DorjsurenB.ZemtsovV.A.BatsaikhanN.DemberelO.YanD.HongfeiZ.YadamjavO.ChonokhuuS.EnkhboldA.GanzorigB.BavuuE.2024. Trend analysis of hydro-climatic variables in the Great Lakes Depression region of Mongolia. Journal of Water and Climate Change15(3): 940–957. DOI 10.2166/wcc.2024.379.Open DOISearch in Google Scholar
Dorjsuren B., Zemtsov V.A., Batsaikhan N., Yan D., Zhou H., Dorligjav S., 2023. Hydro-climatic and vegetation dynamics spatial-temporal changes in the great lakes depression region of Mongolia. Water 15(21): 3748. DOI 10.3390/w15213748.DorjsurenB.ZemtsovV.A.BatsaikhanN.YanD.ZhouH.DorligjavS.2023. Hydro-climatic and vegetation dynamics spatial-temporal changes in the great lakes depression region of Mongolia. Water15(21): 3748. DOI 10.3390/w15213748.Open DOISearch in Google Scholar
Dörnhöfer K., Oppelt N., 2016. Remote sensing for lake research and monitoring – Recent advances. Ecological Indicators 64: 105–122. DOI 10.1016/j.ecolind.2015.12.009.DörnhöferK.OppeltN.2016. Remote sensing for lake research and monitoring – Recent advances. Ecological Indicators64: 105–122. DOI 10.1016/j.ecolind.2015.12.009.Open DOISearch in Google Scholar
Duan Z., Bastiaanssen W.G.M., 2013. Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sensing of Environment 134: 403–416. DOI 10.1016/j.rse.2013.03.010.DuanZ.BastiaanssenW.G.M.2013. Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sensing of Environment134: 403–416. DOI 10.1016/j.rse.2013.03.010.Open DOISearch in Google Scholar
Emami H., Zarei A., 2021. Modelling lake water’s surface changes using environmental and remote sensing data: A case study of Lake Urmia. Remote Sensing Applications: Society and Environment 23: 100594. DOI 10.1016/j.rsase.2021.100594.EmamiH.ZareiA.2021. Modelling lake water’s surface changes using environmental and remote sensing data: A case study of Lake Urmia. Remote Sensing Applications: Society and Environment23: 100594. DOI 10.1016/j.rsase.2021.100594.Open DOISearch in Google Scholar
Enkhbold A., Dingjun L., Ganbold B., Yadamsuren G., Tsa-sanchimeg B., Dorligjav S., Nyamsuren O., Dorjsuren B., Gerelmaa T., Dashpurev B., Boldbayar R., 2024. Changes in morphometric parameters of lakes in different ecological zones of Mongolia: Implications of climate change. Climate Research 92: 79–95. DOI 10.3354/cr01734.EnkhboldA.DingjunL.GanboldB.YadamsurenG.Tsa-sanchimegB.DorligjavS.NyamsurenO.DorjsurenB.GerelmaaT.DashpurevB.BoldbayarR.2024. Changes in morphometric parameters of lakes in different ecological zones of Mongolia: Implications of climate change. Climate Research92: 79–95. DOI 10.3354/cr01734.Open DOISearch in Google Scholar
Enkhbold A., Khukhuudei U., Doljin D., 2021. Morphological classification and origin of lake depressions in Mongolia. Proceedings of the Mongolian Academy of Sciences 61(02): 35–43. DOI 10.5564/pmas.v61i02.1758.EnkhboldA.KhukhuudeiU.DoljinD.2021. Morphological classification and origin of lake depressions in Mongolia. Proceedings of the Mongolian Academy of Sciences61(02): 35–43. DOI 10.5564/pmas.v61i02.1758.Open DOISearch in Google Scholar
Enkhbold A., Khukhuudei U., Kusky T., Tsermaa B., Doljin D., 2022. Depression morphology of Bayan Lake, Zavkhan province, Western Mongolia: Implications for the origin of lake depression in Mongolia. Physical Geography 43(6): 727–752. DOI 10.1080/02723646.2021.1899477.EnkhboldA.KhukhuudeiU.KuskyT.TsermaaB.DoljinD.2022. Depression morphology of Bayan Lake, Zavkhan province, Western Mongolia: Implications for the origin of lake depression in Mongolia. Physical Geography43(6): 727–752. DOI 10.1080/02723646.2021.1899477.Open DOISearch in Google Scholar
Fang J., Bai Y., Wu J., 2015. Towards a better understanding of landscape patterns and ecosystem processes of the Mongolian Plateau. Landscape Ecology 30: 1573–1578. DOI 10.1007/s10980-015-0277-2.FangJ.BaiY.WuJ.2015. Towards a better understanding of landscape patterns and ecosystem processes of the Mongolian Plateau. Landscape Ecology30: 1573–1578. DOI 10.1007/s10980-015-0277-2.Open DOISearch in Google Scholar
Finkl C.W., Benedet L., Andrews J.L., 2005. Interpretation of seabed geomorphology based on spatial analysis of high-density airborne laser bathymetry. Journal of Coastal Research 21(3): 501–514. DOI 10.2112/05-756A.1.FinklC.W.BenedetL.AndrewsJ.L.2005. Interpretation of seabed geomorphology based on spatial analysis of high-density airborne laser bathymetry. Journal of Coastal Research21(3): 501–514. DOI 10.2112/05-756A.1.Open DOISearch in Google Scholar
Gao B.C., 1996. NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment 58(3): 257–266. DOI 10.1016/S0034-4257(96)00067-3.GaoB.C.1996. NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment58(3): 257–266. DOI 10.1016/S0034-4257(96)00067-3.Open DOISearch in Google Scholar
Gurnell A.M., 1998. The hydrogeomorphological effects of beaver dam-building activity. Progress in Physical Geography 22(2): 167–189. DOI 10.1177/03091333980220020.GurnellA.M.1998. The hydrogeomorphological effects of beaver dam-building activity. Progress in Physical Geography22(2): 167–189. DOI 10.1177/03091333980220020.Open DOISearch in Google Scholar
Harmar O.P., Clifford N.J., Thorne C.R., Biedenharn D.S., 2005. Morphological changes of the Lower Mississippi River: Geomorphological response to engineering intervention. River Research and Applications 21(10): 1107–1131. DOI 10.1002/rra.887.HarmarO.P.CliffordN.J.ThorneC.R.BiedenharnD.S.2005. Morphological changes of the Lower Mississippi River: Geomorphological response to engineering intervention. River Research and Applications21(10): 1107–1131. DOI 10.1002/rra.887.Open DOISearch in Google Scholar
Kang S., Lee G., Togtokh C., Jang K., 2015. Characterizing regional precipitation-driven lake area change in Mongolia. Journal of Arid Land 7: 146–158. DOI 10.1007/s40333-014-0081-x.KangS.LeeG.TogtokhC.JangK.2015. Characterizing regional precipitation-driven lake area change in Mongolia. Journal of Arid Land7: 146–158. DOI 10.1007/s40333-014-0081-x.Open DOISearch in Google Scholar
Kumar A., Yang T., Sharma M.P., 2019. Greenhouse gas measurement from Chinese freshwater bodies: A review. Journal of Cleaner Production 233: 368–378. DOI 10.1016/j.jclepro.2019.06.052.KumarA.YangT.SharmaM.P.2019. Greenhouse gas measurement from Chinese freshwater bodies: A review. Journal of Cleaner Production233: 368–378. DOI 10.1016/j.jclepro.2019.06.052.Open DOISearch in Google Scholar
Lebedev S.A., Shevyakova O.P., Bedanokov M.K., 2020. Seasonal and Interannual Variability of the Krasnodar Reservoir Water Level Based on Satellite Altimetry Data. In: Bedanokov, M.K., Lebedev, S.A., Kostianoy, A.G. (eds) The Republic of Adygea Environment. The Handbook of Environmental Chemistry, vol 106. Springer, Cham. DOI 10.1007/698_2020_588.LebedevS.A.ShevyakovaO.P.BedanokovM.K.2020. Seasonal and Interannual Variability of the Krasnodar Reservoir Water Level Based on Satellite Altimetry Data. In: BedanokovM.K.LebedevS.A.KostianoyA.G. (eds) The Republic of Adygea Environment. The Handbook of Environmental Chemistry, vol 106. Springer, Cham. DOI 10.1007/698_2020_588.Open DOISearch in Google Scholar
Lehmkuhl F., Klinge M., Rother H., Hülle D., 2016. Distribution and timing of Holocene and late Pleistocene glacier fluctuations in western Mongolia. Annals of Glaciology 57(71): 169–178. DOI 10.3189/2016AoG71A030.LehmkuhlF.KlingeM.RotherH.HülleD.2016. Distribution and timing of Holocene and late Pleistocene glacier fluctuations in western Mongolia. Annals of Glaciology57(71): 169–178. DOI 10.3189/2016AoG71A030.Open DOISearch in Google Scholar
Lehner B., Messager M.L., Korver M.C., Linke S., 2022. Global hydro-environmental lake characteristics at high spatial resolution. Scientific Data 9(1): 351. DOI 10.1038/s41597-022-01425-z.LehnerB.MessagerM.L.KorverM.C.LinkeS.2022. Global hydro-environmental lake characteristics at high spatial resolution. Scientific Data9(1): 351. DOI 10.1038/s41597-022-01425-z.Open DOISearch in Google Scholar
Lin Y., Li X., Zhang T., Chao N., Yu J., Cai J., Sneeuw N., 2020. Water volume variations estimation and analysis using multisource satellite data: A case study of Lake Victoria. Remote Sensing 12(18): 3052. DOI 10.3390/rs12183052.LinY.LiX.ZhangT.ChaoN.YuJ.CaiJ.SneeuwN.2020. Water volume variations estimation and analysis using multisource satellite data: A case study of Lake Victoria. Remote Sensing12(18): 3052. DOI 10.3390/rs12183052.Open DOISearch in Google Scholar
Liu X., Shi Z., Huang G., Bo Y., Chen G., 2020. Time series remote sensing data-based identification of the dominant factor for inland lake surface area change: Anthropogenic activities or natural events? Remote Sensing 12(4): 612. DOI 10.3390/rs12040612.LiuX.ShiZ.HuangG.BoY.ChenG.2020. Time series remote sensing data-based identification of the dominant factor for inland lake surface area change: Anthropogenic activities or natural events?Remote Sensing12(4): 612. DOI 10.3390/rs12040612.Open DOISearch in Google Scholar
Lu S., Ouyang N., Wu B., Wei Y., Tesemma Z., 2013. Lake water volume calculation with time series remote-sensing images. International Journal of Remote Sensing 34(22): 7962–7973. DOI 10.1080/01431161.2013.827814.LuS.OuyangN.WuB.WeiY.TesemmaZ.2013. Lake water volume calculation with time series remote-sensing images. International Journal of Remote Sensing34(22): 7962–7973. DOI 10.1080/01431161.2013.827814.Open DOISearch in Google Scholar
Luo R., Yuan Q., Yue L., Shi X., 2020. Monitoring recent lake variations under climate change around the Altai Mountains using multimission satellite data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14: 1374–1388. DOI 10.1109/JSTARS.2020.3035872.LuoR.YuanQ.YueL.ShiX.2020. Monitoring recent lake variations under climate change around the Altai Mountains using multimission satellite data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing14: 1374–1388. DOI 10.1109/JSTARS.2020.3035872.Open DOISearch in Google Scholar
Luo X., Tong X., Hu Z., 2021. An applicable and automatic method for earth surface water mapping based on multispectral images. International Journal of Applied Earth Observation and Geoinformation 103: 102472. DOI 10.1016/j.jag.2021.102472.LuoX.TongX.HuZ.2021. An applicable and automatic method for earth surface water mapping based on multispectral images. International Journal of Applied Earth Observation and Geoinformation103: 102472. DOI 10.1016/j.jag.2021.102472.Open DOISearch in Google Scholar
Mady B., Lehmann P., Gorelick S.M., Or D., 2020. Distribution of small seasonal reservoirs in semi-arid regions and associated evaporative losses. Environmental Research Communications 2(6): 061002. DOI 10.1088/2515-7620/ab92af.MadyB.LehmannP.GorelickS.M.OrD.2020. Distribution of small seasonal reservoirs in semi-arid regions and associated evaporative losses. Environmental Research Communications2(6): 061002. DOI 10.1088/2515-7620/ab92af.Open DOISearch in Google Scholar
McFeeters S.K., 1996. The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing 17(7): 1425–1432. DOI 10.1080/01431169608948714.McFeetersS.K.1996. The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing17(7): 1425–1432. DOI 10.1080/01431169608948714.Open DOISearch in Google Scholar
McFeeters S.K., 2013. Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sensing 5(7): 3544–3561. DOI 10.3390/rs5073544.McFeetersS.K.2013. Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sensing5(7): 3544–3561. DOI 10.3390/rs5073544.Open DOISearch in Google Scholar
Melesse A.M., Weng Q., Thenkabail P.S., Senay G.B., 2007. Remote sensing sensors and applications in environmental resources mapping and modelling. Sensors 7(12): 3209–3241. DOI 10.3390/s7123209.MelesseA.M.WengQ.ThenkabailP.S.SenayG.B.2007. Remote sensing sensors and applications in environmental resources mapping and modelling. Sensors7(12): 3209–3241. DOI 10.3390/s7123209.Open DOISearch in Google Scholar
Mendsaihan B., Dulmaa A., Krylov A.V., Kosolapov D.B., Slynko Y.V., Prokin A.A., Demidsereeter S., Lebedeva D.L., Altantsetseg B., Dgebuadze Y.Y., 2016. Formation of the lake-type ecosystem in semidesert zone: Tayshir Reservoir in the Zavkhan River (Western Mongolia). Arid Ecosystems 6: 213–219. DOI 10.1134/S2079096116030082.MendsaihanB.DulmaaA.KrylovA.V.KosolapovD.B.SlynkoY.V.ProkinA.A.DemidsereeterS.LebedevaD.L.AltantsetsegB.DgebuadzeY.Y.2016. Formation of the lake-type ecosystem in semidesert zone: Tayshir Reservoir in the Zavkhan River (Western Mongolia). Arid Ecosystems6: 213–219. DOI 10.1134/S2079096116030082.Open DOISearch in Google Scholar
Ochir A., Munkhjargal M., Bat-Erdene A., Tsetsgee S., 2013. Zavkhan river and its catchment area delineation using satellite image. Journal of Water Resource and Protection 5(10): 1–11. DOI 10.4236/jwarp.2013.510095.OchirA.MunkhjargalM.Bat-ErdeneA.TsetsgeeS.2013. Zavkhan river and its catchment area delineation using satellite image. Journal of Water Resource and Protection5(10): 1–11. DOI 10.4236/jwarp.2013.510095.Open DOISearch in Google Scholar
Oyunbaatar D., Erdenebayar B., Davaa G., Saikhanjargal D., 2017. Recent changes of water regime and resource of the Ganga Lake and related some socio-economic aspects. Modern Environmental Science and Engineering 3(7): 482491. DOI 10.15341/mese(2333-2581)/07.03.2017/008.OyunbaatarD.ErdenebayarB.DavaaG.SaikhanjargalD.2017. Recent changes of water regime and resource of the Ganga Lake and related some socio-economic aspects. Modern Environmental Science and Engineering3(7): 482491. DOI 10.15341/mese(2333-2581)/07.03.2017/008.Open DOISearch in Google Scholar
Oyunbaatar D., Galbaatar D., Munkhjargal S., 2011. Impact of Zavkhan River Regime Reserve and Ulaanboom hydroelectric power plant on climate change. In: Conference of Water Resources and Permafrost in Temperate Regions, Murun City, Khuvsgul Province, Mongolia: 116–122.OyunbaatarD.GalbaatarD.MunkhjargalS.2011. Impact of Zavkhan River Regime Reserve and Ulaanboom hydroelectric power plant on climate change. In: Conference of Water Resources and Permafrost in Temperate Regions, Murun City, Khuvsgul Province, Mongolia: 116–122.Search in Google Scholar
Pi X., Luo Q., Feng L., Xu Y., Tang J., Liang X., Ma E., Cheng R., Fensholt R., Brandt M., Cai X., 2022. Mapping global lake dynamics reveals the emerging roles of small lakes. Nature Communications 13(1): 5777. DOI 10.1038/s41467-022-33239-3.PiX.LuoQ.FengL.XuY.TangJ.LiangX.MaE.ChengR.FensholtR.BrandtM.CaiX.2022. Mapping global lake dynamics reveals the emerging roles of small lakes. Nature Communications13(1): 5777. DOI 10.1038/s41467-022-33239-3.Open DOISearch in Google Scholar
Purevdorj Z., Jargal N., Ganbold O., Munkhbayar M., Purevee E., Jargalsaikhan A., Paik I.H., Paek W.K., Lee J.W., 2023. Spatial and temporal variations in waterfowl assemblage structures in Mongolian lakes and the changes linked to the gradient of lake surface areas. Diversity 15(3): 334. DOI 10.3390/d15030334.PurevdorjZ.JargalN.GanboldO.MunkhbayarM.PureveeE.JargalsaikhanA.PaikI.H.PaekW.K.LeeJ.W.2023. Spatial and temporal variations in waterfowl assemblage structures in Mongolian lakes and the changes linked to the gradient of lake surface areas. Diversity15(3): 334. DOI 10.3390/d15030334.Open DOISearch in Google Scholar
Purevdorj Z., Paek W.K., Munkhbayar M., Ganbold O., Bing G.C., Jargalsaikhan A., Purevee E., Paik I.H., Choi W.S., Jargal N., Lee J.W., 2019. The avifaunal survey at important bird areas in western Mongolia. Journal of the Korean Society of Ornithology 26(1): 7–15. DOI 10.30980/KJO.2019.6.26.1.7.PurevdorjZ.PaekW.K.MunkhbayarM.GanboldO.BingG.C.JargalsaikhanA.PureveeE.PaikI.H.ChoiW.S.JargalN.LeeJ.W.2019. The avifaunal survey at important bird areas in western Mongolia. Journal of the Korean Society of Ornithology26(1): 7–15. DOI 10.30980/KJO.2019.6.26.1.7.Open DOISearch in Google Scholar
Qi M., Liu S., Wu K., Zhu Y., Xie F., Jin H., Gao Y., Yao X., 2022. Improving the accuracy of glacial lake volume estimation: A case study in the Poiqu basin, central Himalayas. Journal of Hydrology 610: 127973. DOI 10.1016/j.jhydrol.2022.127973.QiM.LiuS.WuK.ZhuY.XieF.JinH.GaoY.YaoX.2022. Improving the accuracy of glacial lake volume estimation: A case study in the Poiqu basin, central Himalayas. Journal of Hydrology610: 127973. DOI 10.1016/j.jhydrol.2022.127973.Open DOISearch in Google Scholar
Qi Y., Lian X., Wang H., Zhang J., Yang R., 2020. Dynamic mechanism between human activities and ecosystem services: A case study of Qinghai lake watershed, China. Ecological Indicators 117: 106528. DOI 10.1016/j.ecolind.2020.106528.QiY.LianX.WangH.ZhangJ.YangR.2020. Dynamic mechanism between human activities and ecosystem services: A case study of Qinghai lake watershed, China. Ecological Indicators117: 106528. DOI 10.1016/j.ecolind.2020.106528.Open DOISearch in Google Scholar
Rousta I., Sharif M., Heidari S., Kiani A., Olafsson H., Krzyszczak J., Baranowski P., 2023. Climatic variables impact on inland lakes water levels and area fluctuations in an arid/semi-arid region of Iran, Iraq, and Turkey based on the remote sensing data. Earth Science Informatics 16(2): 1611–1635. DOI 10.1007/s12145-023-00995-9.RoustaI.SharifM.HeidariS.KianiA.OlafssonH.KrzyszczakJ.BaranowskiP.2023. Climatic variables impact on inland lakes water levels and area fluctuations in an arid/semi-arid region of Iran, Iraq, and Turkey based on the remote sensing data. Earth Science Informatics16(2): 1611–1635. DOI 10.1007/s12145-023-00995-9.Open DOISearch in Google Scholar
Saberioon M., Brom J., Nedbal V., Souček P., Císař P., 2020. Chlorophyll-a and total suspended solids retrieval and mapping using Sentinel-2A and machine learning for inland waters. Ecological Indicators 113: 106236. DOI 10.1016/j.ecolind.2020.106236.SaberioonM.BromJ.NedbalV.SoucekP.CísarP.2020. Chlorophyll-a and total suspended solids retrieval and mapping using Sentinel-2A and machine learning for inland waters. Ecological Indicators113: 106236. DOI 10.1016/j.ecolind.2020.106236.Open DOISearch in Google Scholar
Sato T., Tsujimura M., Yamanaka T., Iwasaki H., Sugimoto A., Sugita M., Kimura F., Davaa G., Oyunbaatar D., 2007. Water sources in semiarid northeast Asia as revealed by field observations and isotope transport model. Journal of Geophysical Research: Atmospheres 1-13D17). DOI 10.1029/2006JD008321.SatoT.TsujimuraM.YamanakaT.IwasakiH.SugimotoA.SugitaM.KimuraF.DavaaG.OyunbaatarD.2007. Water sources in semiarid northeast Asia as revealed by field observations and isotope transport model. Journal of Geophysical Research: Atmospheres1–13D17). DOI 10.1029/2006JD008321.Open DOISearch in Google Scholar
Şerban C., Maftei C., Dobrică G., 2022. Surface water change detection via water indices and predictive modeling using remote sensing imagery: A case study of Nuntasi-Tuzla Lake, Romania. Water 14(4): 556. DOI 10.3390/w14040556.ŞerbanC.MafteiC.DobricăG.2022. Surface water change detection via water indices and predictive modeling using remote sensing imagery: A case study of Nuntasi-Tuzla Lake, Romania. Water14(4): 556. DOI 10.3390/w14040556.Open DOISearch in Google Scholar
Seyoum W.M., Milewski A.M., Durham M.C., 2015. Understanding the relative impacts of natural processes and human activities on the hydrology of the Central Rift Valley lakes, East Africa. Hydrological Processes 29(19): 4312–4324. DOI 10.1002/hyp.10490.SeyoumW.M.MilewskiA.M.DurhamM.C.2015. Understanding the relative impacts of natural processes and human activities on the hydrology of the Central Rift Valley lakes, East Africa. Hydrological Processes29(19): 4312–4324. DOI 10.1002/hyp.10490.Open DOISearch in Google Scholar
Shang S., 2013. Lake surface area method to define minimum ecological lake level from level-area-storage curves. Journal of Arid Land 5: 133–142. DOI 10.1007/s40333-013-0153-3.ShangS.2013. Lake surface area method to define minimum ecological lake level from level-area-storage curves. Journal of Arid Land5: 133–142. DOI 10.1007/s40333-013-0153-3.Open DOISearch in Google Scholar
Sheffield J., Wood E.F., Pan M., Beck H., Coccia G., Serrat-Capdevila A., Verbist K.J.W.R.R., 2018. Satellite remote sensing for water resources management: Potential for supporting sustainable development in data-poor regions. Water Resources Research 54(12): 9724–9758. DOI 10.1029/2017WR022437.SheffieldJ.WoodE.F.PanM.BeckH.CocciaG.Serrat-CapdevilaA.VerbistK.J.W.R.R.2018. Satellite remote sensing for water resources management: Potential for supporting sustainable development in data-poor regions. Water Resources Research54(12): 9724–9758. DOI 10.1029/2017WR022437.Open DOISearch in Google Scholar
Shen Y., Liu D., Jiang L., Nielsen K., Yin J., Liu J., Bauer-Gottwein P., 2022. High-resolution water level and storage variation datasets for 338 reservoirs in China during 2010–2021. Earth System Science Data 14(12): 5671–5694. DOI 10.5194/essd-14-5671-2022.ShenY.LiuD.JiangL.NielsenK.YinJ.LiuJ.Bauer-Got-tweinP.2022. High-resolution water level and storage variation datasets for 338 reservoirs in China during 2010-2021. Earth System Science Data14(12): 5671–5694. DOI 10.5194/essd-14-5671-2022.Open DOISearch in Google Scholar
Soille P., Pesaresi M., 2002. Advances in mathematical morphology applied to geoscience and remote sensing. IEEE Transactions on Geoscience and Remote Sensing 40(9): 2042–2055. DOI 10.1109/TGRS.2002.804618.SoilleP.PesaresiM.2002. Advances in mathematical morphology applied to geoscience and remote sensing. IEEE Transactions on Geoscience and Remote Sensing40(9): 20422055. DOI 10.1109/TGRS.2002.804618.Open DOISearch in Google Scholar
Stringer L.C., Mirzabaev A., Benjaminsen T.A., Harris R.M., Jafari M., Lissner T.K., Stevens N., Tirado-von Der Pahlen C., 2021. Climate change impacts on water security in global drylands. One Earth 4(6): 851–864. DOI 10.1016/j.oneear.2021.05.010.StringerL.C.MirzabaevA.BenjaminsenT.A.HarrisR.M.JafariM.LissnerT.K.StevensN.Tirado-von Der PahlenC.2021. Climate change impacts on water security in global drylands. One Earth4(6): 851–864. DOI 10.1016/j.oneear.2021.05.010.Open DOISearch in Google Scholar
Sukhbaatar C., Sodnom T., Hauer C., 2020. Challenges for hydropeaking mitigation in an ice-covered river: A case study of the Eg hydropower plant, Mongolia. River Research and Applications 36(8): 1416–1429. DOI10.1002/rra.3661.SukhbaatarC.SodnomT.HauerC.2020. Challenges for hydropeaking mitigation in an ice-covered river: A case study of the Eg hydropower plant, Mongolia. River Research and Applications36(8): 1416–1429. DOI10.1002/rra.3661.Open DOISearch in Google Scholar
Sumiya E., Dorjsuren B., Yan D., Dorligjav S., Wang H., Enkhbold A., Weng B., Qin T., Wang K., Gerelmaa T., Dambaravjaa O., 2020. Changes in water surface area of the lake in the Steppe Region of Mongolia: A case study of Ugii Nuur Lake, Central Mongolia. Water 12(5): 1470. DOI 10.3390/w12051470.SumiyaE.DorjsurenB.YanD.DorligjavS.WangH.EnkhboldA.WengB.QinT.WangK.GerelmaaT.DambaravjaaO.2020. Changes in water surface area of the lake in the Steppe Region of Mongolia: A case study of Ugii Nuur Lake, Central Mongolia. Water12(5): 1470. DOI 10.3390/w12051470.Open DOISearch in Google Scholar
Tserensodnom J., 1971. Lakes of Mongolia. Mongolian Academy of Sciences, Institute of Geography and Permafrost, Ulaanbaatar, Mongolia: 56–60.TserensodnomJ.1971. Lakes of Mongolia. Mongolian Academy of Sciences, Institute of Geography and Permafrost, Ulaanbaatar, Mongolia: 56–60.Search in Google Scholar
Tserensodnom J., 2000. Catalog of lakes of Mongolia. Mongolian Academy of Sciences, Institute of Geography, Ulaanbaatar, Mongolia: 45–84.TserensodnomJ.2000. Catalog of lakes of Mongolia. Mongolian Academy of Sciences, Institute of Geography, Ulaanbaatar, Mongolia: 45–84.Search in Google Scholar
USGS [United States Geological Survey], 2023. USGS Global Visualization Viewer. Online:glovis.usgs.gov(accessed March 2023).USGS [United States Geological Survey], 2023. USGS Global Visualization Viewer. Online:glovis.usgs.gov(accessed March 2023).Search in Google Scholar
Valeyev A., Karatayev M., Abitbayeva A., Uxukbayeva S., Bektursynova A., Sharapkhanova Z., 2019. Monitoring coastline dynamics of Alakol Lake in Kazakhstan using remote sensing data. Geosciences 9(9): 404. DOI 10.3390/geosciences9090404.ValeyevA.KaratayevM.AbitbayevaA.UxukbayevaS.BektursynovaA.SharapkhanovaZ.2019. Monitoring coastline dynamics of Alakol Lake in Kazakhstan using remote sensing data. Geosciences9(9): 404. DOI 10.3390/geosciences9090404.Open DOISearch in Google Scholar
Wang G., Zhang J., Li X., Bao Z., Liu Y., Liu C., He R., Luo J., 2017. Investigating causes of changes in runoff using hydrological simulation approach. Applied Water Science 7: 2245–2253. DOI 10.1007/s13201-016-0396-1.WangG.ZhangJ.LiX.BaoZ.LiuY.LiuC.HeR.LuoJ.2017. Investigating causes of changes in runoff using hydrological simulation approach. Applied Water Science7: 2245–2253. DOI 10.1007/s13201-016-0396-1.Open DOISearch in Google Scholar
Wang Y., Gu X., Yang G., Yao J., Liao N., 2021. Impacts of climate change and human activities on water resources in the Ebinur Lake Basin, Northwest China. Journal of Arid Land 13(6): 581–598. DOI 10.1007/s40333-021-0067-4.WangY.GuX.YangG.YaoJ.LiaoN.2021. Impacts of climate change and human activities on water resources in the Ebinur Lake Basin, Northwest China. Journal of Arid Land13(6): 581–598. DOI 10.1007/s40333-021-0067-4.Open DOISearch in Google Scholar
Wang Y.J., Qin D.H., 2017. Influence of climate change and human activity on water resources in arid region of Northwest China: An overview. Advances in Climate Change Research 8(4): 268–278. DOI 10.1016/j.accre.2017.08.004.WangY.J.QinD.H.2017. Influence of climate change and human activity on water resources in arid region of Northwest China: An overview. Advances in Climate Change Research8(4): 268–278. DOI 10.1016/j.accre.2017.08.004.Open DOISearch in Google Scholar
Xu N., Ma Y., Wei Z., Huang C., Li G., Zheng H., Wang X.H., 2022. Satellite observed recent rising water levels of global lakes and reservoirs. Environmental Research Letters 17(7): 074013. DOI 10.1088/1748-9326/ac78f8.XuN.MaY.WeiZ.HuangC.LiG.ZhengH.WangX.H.2022. Satellite observed recent rising water levels of global lakes and reservoirs. Environmental Research Letters17(7): 074013. DOI 10.1088/1748-9326/ac78f8.Open DOISearch in Google Scholar
Yembuu B., 2021. General Geographical Characteristics of Mongolia. In: Yembuu, B. (eds) The Physical Geography of Mongolia. Geography of the Physical Environment. Springer, Cham. DOI 10.1007/978-3-030-61434-8_1.YembuuB.2021. General Geographical Characteristics of Mongolia. In: YembuuB. (eds) The Physical Geography of Mongolia. Geography of the Physical Environment. Springer, Cham. DOI 10.1007/978-3-030-61434-8_1.Open DOISearch in Google Scholar
Yu Y., Chen X., Malik I., Wistuba M., Cao Y., Hou D., Ta Z., He J., Zhang L., Yu R., Zhang H., 2021. Spatiotemporal changes in water, land use, and ecosystem services in Central Asia considering climate changes and human activities. Journal of Arid Land 13: 881–890. DOI10.1007/s40333-021-0084-3.YuY.ChenX.MalikI.WistubaM.CaoY.HouD.TaZ.HeJ.ZhangL.YuR.ZhangH.2021. Spatiotemporal changes in water, land use, and ecosystem services in Central Asia considering climate changes and human activities. Journal of Arid Land13: 881–890. DOI10.1007/s40333-021-0084-3.Open DOISearch in Google Scholar
Yue H., Liu Y., 2019. Variations in the lake area, water level, and water volume of Hongjiannao Lake during 19862018 based on Landsat and ASTER GDEM data. Environmental Monitoring and Assessment 191: 1–25. DOI10.1007/s10661-019-7715-6.YueH.LiuY.2019. Variations in the lake area, water level, and water volume of Hongjiannao Lake during 19862018 based on Landsat and ASTER GDEM data. Environmental Monitoring and Assessment191: 1–25. DOI10.1007/s10661-019-7715-6.Open DOISearch in Google Scholar
Zhang G., Bolch T., Chen W., Crétaux J.F., 2021. Comprehensive estimation of lake volume changes on the Tibetan Plateau during 1976–2019 and basin-wide glacier contribution. Science of the Total Environment 772: 145463. DOI 10.1016/j.scitotenv.2021.145463.ZhangG.BolchT.ChenW.CrétauxJ.F.2021. Comprehensive estimation of lake volume changes on the Tibetan Plateau during 1976–2019 and basin-wide glacier contribution. Science of the Total Environment772: 145463. DOI 10.1016/j.scitotenv.2021.145463.Open DOISearch in Google Scholar
Zhang G., Yao T., Chen W., Zheng G., Shum C.K., Yang K., Piao S., Sheng Y., Yi S., Li J., O’Reilly C.M., 2019. Regional differences of lake evolution across China during 1960s-2015 and its natural and anthropogenic causes. Remote Sensing of Environment 221: 386–404. DOI 10.1016/j.rse.2018.11.038.ZhangG.YaoT.ChenW.ZhengG.ShumC.K.YangK.PiaoS.ShengY.YiS.LiJ.O’ReillyC.M.2019. Regional differences of lake evolution across China during 1960s-2015 and its natural and anthropogenic causes. Remote Sensing of Environment221: 386–404. DOI 10.1016/j.rse.2018.11.038.Open DOISearch in Google Scholar