Open Access

A LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) for biological tissue impedance analysis and equivalent circuit modelling


Cite

Martinsen OG, Grimnes S. Bioimpedance and Bioelectricity Basics, second ed., Academic Press, 2008.MartinsenOGGrimnesS.Bioimpedance and Bioelectricity BasicsAcademic Press200810.1016/B978-0-12-374004-5.00010-6Search in Google Scholar

Ackmann JJ, Complex Bioelectric Impedance Measurement System for the Frequency Range from 5 Hz to 1 MHz, Annals of Biomedical Engineering. 1993; 21: 135-146. dx.doi.org/10.1007/BF0236760910.1007/BF02367609AckmannJJComplex Bioelectric Impedance Measurement System for the Frequency Range from 5 Hz to 1 MHzAnnals of Biomedical Engineering199321135146dx.doi.org/10.1007/BF02367609Open DOISearch in Google Scholar

Cheneler D, Bowen J, Kaklamani G. Transient bioimpedance monitoring of mechanotransduction in artificial tissue during indentation. J Electr Bioimp. 2014; 5(1): 55-73. dx.doi.org/10.5617/joeb.869ChenelerDBowenJKaklamaniGTransient bioimpedance monitoring of mechanotransduction in artificial tissue during indentationJ Electr Bioimp2014515573dx.doi.org/10.5617/joeb.869Open DOISearch in Google Scholar

Bera TK, Seo JK, Kwon H and Nagaraju J, A LabVIEW Based Electrical Bio-Impedance Spectroscopic Data Interpreter (LEBISDI) for Studying The Equivalent Circuit Parameters of Biological Tissues, 15th International Conference on Electrical Bio-Impedance (ICEBI) and 14th Conference on Electrical Impedance Tomography (EIT), Germany, 2013, pp 77.BeraTKSeoJKKwonHNagarajuJA LabVIEW Based Electrical Bio-Impedance Spectroscopic Data Interpreter (LEBISDI) for Studying The Equivalent Circuit Parameters of Biological Tissues, 15th International Conference on Electrical Bio-Impedance (ICEBI) and 14th Conference on Electrical Impedance Tomography (EIT)Germany201377Search in Google Scholar

Koziol L, Pitre Jr JJ, Bull JL, Dodde RE, Kruger G, Vollmer A, Weitzel WF. The feasibility of using compression bioimpedance measurements to quantify peripheral edema. J Electr Bioimp. 2014; 5(1): 99-109. dx.doi.org/10.5617/joeb.929KoziolLPitreJr JJBullJLDoddeREKrugerGVollmerAWeitzelWFThe feasibility of using compression bioimpedance measurements to quantify peripheral edemaJ Electr Bioimp20145199109dx.doi.org/10.5617/joeb.929Open DOISearch in Google Scholar

Bauchot AD, Harker FR, Arnold WM. The use of electrical impedance spectroscopy to assess the physiological condition of kiwifruit. Postharvest Biology and Technology. 2000; 18(1): 9–18. dx.doi.org/10.1016/S0925-5214(99)00056-310.1016/S0925-5214(99)00056-3BauchotADHarkerFRArnoldWMThe use of electrical impedance spectroscopy to assess the physiological condition of kiwifruitPostharvest Biology and Technology2000181918dx.doi.org/10.1016/S0925-5214(99)00056-3Open DOISearch in Google Scholar

Heymsfield S, Zheng J, Wang M, Gao C, Kim JYH, Choi A, ... & Kim I. Evaluation of Novel Hand-held Wireless Bioelectrical Impedance Analysis (BIA) Body Composition Devices. The FASEB Journal. 2015;29(1 Supplement):747-2.HeymsfieldSZhengJWangMGaoCKimJYHChoiAKimI. Evaluationof Novel Hand-held Wireless Bioelectrical Impedance Analysis (BIA) Body Composition DevicesThe FASEB Journal2015291 Supplement747210.1096/fasebj.29.1_supplement.747.2Search in Google Scholar

Azevedo, ERFBM, Alonso, KC, Cliquet Jr, A. Body composition assessment by bioelectrical impedance analysis and body mass index in individuals with chronic spinal cord injury. J Electr Bioimp. 2016; 7(1): 2-5. dx.doi.org/10.5617/joeb.2421AzevedoERFBMAlonsoKCCliquet JrABody composition assessment by bioelectrical impedance analysis and body mass index in individuals with chronic spinal cord injuryJ Electr Bioimp20167125dx.doi.org/10.5617/joeb.2421Open DOISearch in Google Scholar

Bera TK. Bioelectrical impedance methods for noninvasive health monitoring: a review. Journal of Medical Engineering, 2014. dx.doi.org/10.1155/2014/38125127006932BeraTKBioelectrical impedance methods for noninvasive health monitoring: a reviewJournal of Medical Engineering2014dx.doi.org/10.1155/2014/38125110.1155/2014/381251478269127006932Search in Google Scholar

Kahraman A, Hilsenbeck J, Nyga M, Ertle J, Wree A, Plauth M, Gerken G, Canbay AE. Bioelectrical impedance analysis in clinical practice: implications for hepatitis C therapy BIA and hepatitis C, Virology Journal. 2010; 7: 191. dx.doi.org/10.1186/1743-422X-7-1912071287810.1186/1743-422X-7-191KahramanAHilsenbeckJNygaMErtleJWreeAPlauthMGerkenGCanbayAEBioelectrical impedance analysis in clinical practice: implications for hepatitis C therapy BIA and hepatitis CVirology Journal20107191dx.doi.org/10.1186/1743-422X-7-191293062520712878Search in Google Scholar

Orazem ME, Tribollet B. Electrochemical Impedance Spectroscopy. Wiley-Inter Sc., 2008. dx.doi.org/10.1002/9780470381588OrazemMETribolletBElectrochemical Impedance SpectroscopyWiley-Inter Sc2008dx.doi.org/10.1002/978047038158810.1002/9780470381588Search in Google Scholar

Macdonald RJ. Impedance Spectroscopy. Annals of Biomedical Engineering. 1992; 20: 289-305. dx.doi.org/10.1007/BF02368532144382510.1007/BF02368532MacdonaldRJImpedance SpectroscopyAnnals of Biomedical Engineering199220289305dx.doi.org/10.1007/BF023685321443825Search in Google Scholar

Bera TK and Nagaraju J. Electrical Impedance Spectroscopic Study of Broiler Chicken Tissues Suitable for The Development of Practical Phantoms in Multifrequency EIT, J Electr Bioimp. 2011; 1: 48–63. dx.doi.org/10.5617/joeb.174BeraTKNagarajuJ. ElectricalImpedance Spectroscopic Study of Broiler Chicken Tissues Suitable for The Development of Practical Phantoms in Multifrequency EITJ Electr Bioimp201114863dx.doi.org/10.5617/joeb.174Open DOISearch in Google Scholar

Chakraborty S, Das C, Saha R, Das A, Bera NK, Chattopadhyay, D., Karmakar A, Chattopadhyay D, Chattopadhyay S. Investigating the quasi-oscillatory behavior of electrical parameters with the concentration of D-glucose in its aqueous solution at room temperature by employing impedance spectroscopy technique. J Electr Bioimp. 2015; 6(1): 10-17. dx.doi.org/10.5617/joeb.2363ChakrabortySDasCSahaRDasABeraNKChattopadhyayD.KarmakarAChattopadhyayDChattopadhyaySInvestigating the quasi-oscillatory behavior of electrical parameters with the concentration of D-glucose in its aqueous solution at room temperature by employing impedance spectroscopy techniqueJ Electr Bioimp2015611017dx.doi.org/10.5617/joeb.2363Open DOISearch in Google Scholar

Sammer M, Laarhoven B, Mejias E, Yntema D, Fuchs EC, Holler G, Brasseur G, Lankmayr, E. Biomass measurement of living Lumbriculus variegatus with impedance spectroscopy. J Electr Bioimp. 2014; 5(1): 92-98. dx.doi.org/10.5617/joeb.934SammerMLaarhovenBMejiasEYntemaDFuchsECHollerGBrasseurGLankmayrEBiomass measurement of living Lumbriculus variegatus with impedance spectroscopyJ Electr Bioimp2014519298dx.doi.org/10.5617/joeb.934Open DOISearch in Google Scholar

Ruiz GA, Zamora ML, Felice CJ. Impedance spectroscopy of yeast cells attached to gold electrodes. J Electr Bioimp. 2014; 5(1): 40-47. dx.doi.org/10.5617/joeb.809RuizGAZamoraMLFeliceCJImpedance spectroscopy of yeast cells attached to gold electrodesJ Electr Bioimp2014514047dx.doi.org/10.5617/joeb.809Open DOISearch in Google Scholar

Birgersson UH, Birgersson E, Ollmar S. Estimating electrical properties and the thickness of skin with electrical impedance spectroscopy: Mathematical analysis and measurements. J Electr Bioimp. 2012; 3(1): 51-60. dx.doi.org/10.5617/joeb.400BirgerssonUHBirgerssonEOllmarSEstimating electrical properties and the thickness of skin with electrical impedance spectroscopy: Mathematical analysis and measurementsJ Electr Bioimp2012315160dx.doi.org/10.5617/joeb.400Open DOISearch in Google Scholar

Röthlingshöfer L, Ulbrich M, Hahne S, Leonhardt S. Monitoring change of body fluid during physical exercise using bioimpedance spectroscopy and finite element simulations. J Electr Bioimp. 2011; 2(1): 79-85. dx.doi.org/10.5617/joeb.178RöthlingshöferLUlbrichMHahneSLeonhardtSMonitoring change of body fluid during physical exercise using bioimpedance spectroscopy and finite element simulationsJ Electr Bioimp2011217985dx.doi.org/10.5617/joeb.178Open DOISearch in Google Scholar

Repo T, Paine DH, Taylor AG. Electrical impedance spectroscopy in relation to seed viability and moisture content in snap bean (Phaseolus vulgaris L.), Seed Science Research. 2002; 12: 17-29. dx.doi.org/10.1079/SSR20019410.1079/SSR200194RepoTPaineDHTaylorAGElectrical impedance spectroscopy in relation to seed viability and moisture content in snap bean (Phaseolus vulgaris L.)Seed Science Research2002121729dx.doi.org/10.1079/SSR200194Open DOISearch in Google Scholar

Chowdhury A, Kanti Bera T, Ghoshal D, Chakraborty B. Electrical Impedance Variations in Banana Ripening: An Analytical Study with Electrical Impedance Spectroscopy. Journal of Food Process Engineering. 2016 (in press). dx.doi.org/10.1111/jfpe.12387ChowdhuryAKanti BeraTGhoshalDChakrabortyBElectrical Impedance Variations in Banana Ripening: An Analytical Study with Electrical Impedance SpectroscopyJournal of Food Process Engineering2016(in press)dx.doi.org/10.1111/jfpe.12387Open DOISearch in Google Scholar

Barsoukov E, Macdonald JR. Impedance Spectroscopy: Theory, Experiment, and Applications. Wiley-Inter Sc.; 2 Ed. 2005.BarsoukovEMacdonaldJRImpedance Spectroscopy: Theory, Experiment, and ApplicationsWiley-Inter Sc2 Ed200510.1002/0471716243Search in Google Scholar

Gomez-Clapers J, Casanella R, Pallas-Areny R. A novel method to obtain proximal plethysmographic information from distal measurements using the impedance plethysmogram. J Electr Bioimp. 2015; 6(1): 44-48. dx.doi.org/10.5617/joeb.2575Gomez-ClapersJCasanellaRPallas-ArenyRA novel method to obtain proximal plethysmographic information from distal measurements using the impedance plethysmogramJ Electr Bioimp2015614448dx.doi.org/10.5617/joeb.2575Open DOISearch in Google Scholar

Nyboer J, Kreider MM, Hannapel L. Electrical Impedance Plethysmography - A Physical and Physiologic Approach to Peripheral Vascular Study. Circulation. 1950; 2: 811-821. dx.doi.org/10.1161/01.CIR.2.6.81114783833NyboerJKreiderMMHannapelL. Electrical Impedance Plethysmography - A PhysicalPhysiologicApproachto Peripheral Vascular StudyCirculation19502811821dx.doi.org/10.1161/01.CIR.2.6.811Search in Google Scholar

Griffths RW, Philpot ME, Chapman BJ, Munday KA. Impedance cardiography: non-invasive cardiac output measurement after burn injury. Int. J. Tissue React. 1981; 3(1): 47-55.7287057GriffthsRWPhilpotMEChapmanBJMundayKAImpedance cardiography: non-invasive cardiac output measurement after burn injuryInt. J. Tissue React1981314755Search in Google Scholar

van Eijnatten MA, van Rijssel MJ, Peters RJ, Verdaasdonk RM, Meijer JH. Comparison of cardiac time intervals between echocardiography and impedance cardiography at various heart rates. J Electr Bioimp. 2014; 5(1): 2-8. dx.doi.org/10.5617/joeb.690vanEijnatten MAvan RijsselMJPetersRJVerdaasdonkRMMeijerJHComparison of cardiac time intervals between echocardiography and impedance cardiography at various heart ratesJ Electr Bioimp20145128dx.doi.org/10.5617/joeb.690Open DOISearch in Google Scholar

Woltjer HH, Bogaard HJ, de Vries PMJM. The technique of impedance cardiography. European Heart Journal. 1997; 18: 1396-1403. dx.doi.org/10.1093/oxfordjournals.eurheartj.a015464945844410.1093/oxfordjournals.eurheartj.a015464WoltjerHHBogaardHJdeVries PMJMThe technique of impedance cardiographyEuropean Heart Journal19971813961403dx.doi.org/10.1093/oxfordjournals.eurheartj.a0154649458444Search in Google Scholar

Da Silva JE, De Sá JM, Jossinet J. Classification of breast tissue by electrical impedance spectroscopy. Medical and Biological Engineering and Computing. 2000; 38(1): 26-30. dx.doi.org/10.1007/BF0234468410.1007/BF02344684DaSilva JEDeSá JMJossinetJClassification of breast tissue by electrical impedance spectroscopyMedical and Biological Engineering and Computing20003812630dx.doi.org/10.1007/BF0234468410829386Open DOISearch in Google Scholar

Kerner TE, Paulsen KD, Hartov A, Soho SK, Poplack SP. Electrical impedance spectroscopy of the breast: clinical imaging results in 26 subjects. IEEE Transactions on Medical Imaging. 2002; 21(6): 638-645. dx.doi.org/10.1109/TMI.2002.8006061216686010.1109/TMI.2002.800606KernerTEPaulsenKDHartovASohoSKPoplackSPElectrical impedance spectroscopy of the breast: clinical imaging results in 26 subjectsIEEE Transactions on Medical Imaging2002216638645dx.doi.org/10.1109/TMI.2002.800606Search in Google Scholar

Laufer S, Ivorra A, Reuter VE, Rubinsky B, Solomon SB. Electrical impedance characterization of normal and cancerous human hepatic tissue. Physiological measurement. 2010; 31(7): 995. dx.doi.org/10.1088/0967-3334/31/7/00910.1088/0967-3334/31/7/009LauferSIvorraAReuterVERubinskyBSolomonSBElectrical impedance characterization of normal and cancerous human hepatic tissuePhysiological measurement2010317995dx.doi.org/10.1088/0967-3334/31/7/00920577035Open DOISearch in Google Scholar

Halter RJ, Schned A, Heaney J, Hartov A, Schutz S, Paulsen KD. Electrical impedance spectroscopy of benign and malignant prostatic tissues. The Journal of urology. 2008; 179(4): 1580-1586. dx.doi.org/10.1016/j.juro.2007.11.04310.1016/j.juro.2007.11.043HalterRJSchnedAHeaneyJHartovASchutzSPaulsenKDElectrical impedance spectroscopy of benign and malignant prostatic tissuesThe Journal of urology2008179415801586dx.doi.org/10.1016/j.juro.2007.11.04318295258Open DOISearch in Google Scholar

Bonmassar G, Iwaki S, Goldmakher G, Angelone LM, Belliveau JW, Lev MH. On the measurement of electrical impedance spectroscopy (EIS) of the human head. Int. J. Bioelectromagn. 2010; 12(1): 32.21152370BonmassarGIwakiSGoldmakherGAngeloneLMBelliveauJWLevMHOn the measurement of electrical impedance spectroscopy (EIS) of the human headInt. J. Bioelectromagn201012132Search in Google Scholar

Sanchez B, Vandersteen G, Martin I, Castillo D, Torrego A, Riu PJ, Schoukens J, Bragos R. In vivo electrical bioimpedance characterization of human lung tissue during the bronchoscopy procedure. A feasibility study. Med. Eng. Phys. 2013; 35(7): 949-957. dx.doi.org/10.1016/j.medengphy.2012.09.004SanchezBVandersteenGMartinICastilloDTorregoARiuPJSchoukensJBragosRIn vivo electrical bioimpedance characterization of human lung tissue during the bronchoscopy procedureA feasibility study. Med. Eng. Phys2013357949957dx.doi.org/10.1016/j.medengphy.2012.09.004Open DOISearch in Google Scholar

Zheng B, Tublin ME, Klym AH, Gur D. Classification of Thyroid Nodules Using a Resonance-Frequency–Based Electrical Impedance Spectroscopy: A Preliminary Assessment. Thyroid. 2013; 23(7): 854-862. dx.doi.org/10.1089/thy.2012.04132325972310.1089/thy.2012.0413ZhengBTublinMEKlymAHGurDClassification of Thyroid Nodules Using a Resonance-Frequency–Based Electrical Impedance Spectroscopy: A Preliminary AssessmentThyroid2013237854862dx.doi.org/10.1089/thy.2012.0413370410523259723Search in Google Scholar

Kyle AH, Chan CT, Minchinton AI. Characterization of three-dimensional tissue cultures using electrical impedance spectroscopy. Biophysical journal. 1999; 76(5): 2640-2648. dx.doi.org/10.1016/S0006-3495(99)77416-310.1016/S0006-3495(99)77416-310233078KyleAHChanCTMinchintonAICharacterization of three-dimensional tissue cultures using electrical impedance spectroscopyBiophysical journal199976526402648dx.doi.org/10.1016/S0006-3495(99)77416-3Open DOISearch in Google Scholar

Yang L. Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes. Talanta. 2008; 74(5): 1621-1629. dx.doi.org/10.1016/j.talanta.2007.10.01810.1016/j.talanta.2007.10.01818371827YangLElectrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodesTalanta200874516211629dx.doi.org/10.1016/j.talanta.2007.10.01818371827Open DOISearch in Google Scholar

K'Owino IO, Sadik OA. Impedance spectroscopy: a powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis. 2005; 17(23): 2101-2113. dx.doi.org/10.1002/elan.20050337110.1002/elan.200503371K'OwinoIOSadikOAImpedance spectroscopy: a powerful tool for rapid biomolecular screening and cell culture monitoringElectroanalysis2005172321012113dx.doi.org/10.1002/elan.200503371Open DOISearch in Google Scholar

Schwan HP. Electrical properties of tissues and cell suspensions: mechanisms and models. Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 1994; 1: A70-A71. dx.doi.org/10.1109/IEMBS.1994.412155SchwanHPElectrical properties of tissues and cell suspensions: mechanisms and modelsProceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society19941A70A71dx.doi.org/10.1109/IEMBS.1994.412155Open DOISearch in Google Scholar

Martinsen ØG, Grimnes S, Schwan HP, Interface Phenomena and Dielectric Properties of Biological Tissue. Encyclopedia of Surface and Colloid Science. 2002. 2643-2653.MartinsenmØGGrimnesSSchwanHPInterface Phenomena and Dielectric Properties of Biological TissueEncyclopedia of Surface and Colloid Science200226432653Search in Google Scholar

Schwan HP, Electrical Properties of Tissue and Cell Suspensions. In Advances in Biological and Medical Physics, Lawrence, J.H., Tobias, C.A., Eds.; Acad. Press: New York. 1957; V: 147-209. dx.doi.org/10.1016/b978-1-4832-3111-2.50008-0SchwanHPElectrical Properties of Tissue and Cell SuspensionsAdvances in Biological and Medical PhysicsLawrenceJ.H.TobiasC.A.Acad. PressNew York1957V147209dx.doi.org/10.1016/b978-1-4832-3111-2.50008-0Open DOISearch in Google Scholar

Seo JK, Bera TK, Kwon H, Sadleir R. Effective admittivity of biological tissues as a coefficient of elliptic PDE. Computational and Mathematical Methods in Medicine. 2013; Article ID 353849, 10 pages. dx.doi.org/10.1155/2013/35384923710251SeoJKBeraTKKwonHSadleirREffective admittivity of biological tissues as a coefficient of elliptic PDEComputational and Mathematical Methods in Medicine2013Article ID 353849, 10 pagesdx.doi.org/10.1155/2013/35384910.1155/2013/353849365462723710251Search in Google Scholar

Miklavcic D, Pavselj N, Hart FX. Electric Properties of Tissues, Wiley Encyclopedia of Biomedical Engineering, John Wiley & Sons, Inc. 2006. 1-12.MiklavcicDPavseljNHartFXElectric Properties of Tissues, Wiley Encyclopedia of Biomedical EngineeringJohn Wiley & Sons, Inc200611210.1002/9780471740360.ebs0403Search in Google Scholar

Lewis Jr GK, Lewis Sr GK, Olbricht W. Cost-effective broad-band electrical impedance spectroscopy measurement circuit and signal analysis for piezo-materials and ultrasound transducers. Measurement Science and Technology. 2008; 19(10): 105102. dx.doi.org/10.1088/0957-0233/19/10/10510210.1088/0957-0233/19/10/105102LewisJr GKLewis SrGKOlbrichtWCost-effective broad-band electrical impedance spectroscopy measurement circuit and signal analysis for piezo-materials and ultrasound transducersMeasurement Science and Technology20081910105102dx.doi.org/10.1088/0957-0233/19/10/105102Open DOISearch in Google Scholar

Seoane F. Ferreira J, Sanchéz JJ, Bragós R. An analog front-end enables electrical impedance spectroscopy system on-chip for biomedical applications. Physiological Measurement. 2008; 29(6): S267. dx.doi.org/10.1088/0967-3334/29/6/S231854482310.1088/0967-3334/29/6/S23SeoaneFFerreiraJSanchézJJBragósRAn analog front-end enables electrical impedance spectroscopy system on-chip for biomedical applicationsPhysiological Measurement2008296S267dx.doi.org/10.1088/0967-3334/29/6/S2318544823Search in Google Scholar

Schröder J, Doerner S, Schneider T, Hauptmann P. Analogue and digital sensor interfaces for impedance spectroscopy. Measurement Science and Technology. 2004; 15(7): 1271. dx.doi.org/10.1088/0957-0233/15/7/00710.1088/0957-0233/15/7/007SchröderJDoernerSSchneiderTHauptmannPAnalogue and digital sensor interfaces for impedance spectroscopyMeasurement Science and Technology20041571271dx.doi.org/10.1088/0957-0233/15/7/007Open DOISearch in Google Scholar

Zhao YQ, Demosthenous A, Bayford RH. A CMOS instrumentation amplifier for wideband bioimpedance spectroscopy systems. In Proceedings of the IEEE International Symposium on Circuits and Systems, 2006. ISCAS 2006, 4 pages.ZhaoYQDemosthenousABayfordRHA CMOS instrumentation amplifier for wideband bioimpedance spectroscopy systemsProceedings of the IEEE International Symposium on Circuits and Systems2006ISCAS 20064Search in Google Scholar

Masot R, Alca-iz M, Fuentes A, Schmidt FC, Barat JM, Gil L, Baigts D, Martinez-Ma-es R, Soto, J. Design of a low-cost non-destructive system for punctual measurements of salt levels in food products using impedance spectroscopy. Sensors and Actuators A: Physical. 2010; 158(2): 217-223. dx.doi.org/10.1016/j.sna.2010.01.01010.1016/j.sna.2010.01.010MasotRAlca-izMFuentesASchmidtFCBaratJMGilLBaigtsDMartinez-Ma-esRSotoJDesign of a low-cost non-destructive system for punctual measurements of salt levels in food products using impedance spectroscopySensors and Actuators A: Physical20101582217223dx.doi.org/10.1016/j.sna.2010.01.010Open DOISearch in Google Scholar

Chintan M. Bhatt, Nagaraju J. Instrumentation to Estimate the Moisture Content in Bread Using Electrical Impedance Spectroscopy. Sensors & Transducers Journal. 2008; 97(10): 45-54.Chintan MBhattNagarajuJ.Instrumentation to Estimate the Moisture Content in Bread Using Electrical Impedance Spectroscopy Sensors & Transducers Journal200897104554Search in Google Scholar

Chowdhury A, Nizamudheen VK, Bera TK, Ghoshal D, Chakraborty B. A study on the Impedance variation in Banana during Ripening using AD5933 based Impedance spectrometer with LabVIEW. Proceeding of the IEEE ICSSS-2016, India.ChowdhuryANizamudheenVKBeraTKGhoshalDChakrabortyBA study on the Impedance variation in Banana during Ripening using AD5933 based Impedance spectrometer with LabVIEWProceeding of the IEEE ICSSS-2016IndiaSearch in Google Scholar

Hoja J, Lentka G. Interface circuit for impedance sensors using two specialized single-chip microsystems. Sensors and Actuators A: Physical 2010; 163(1): 191-197. dx.doi.org/10.1016/j.sna.2010.08.00210.1016/j.sna.2010.08.002HojaJLentkaGInterface circuit for impedance sensors using two specialized single-chip microsystemsSensors and Actuators A: Physical20101631191197dx.doi.org/10.1016/j.sna.2010.08.002Open DOISearch in Google Scholar

Margo C, Katrib J, Nadi M, Rouane A. A four-electrode low frequency impedance spectroscopy measurement system using the AD5933 measurement chip. Physiological Measurement. 2013; 34(4): 391. dx.doi.org/10.1088/0967-3334/34/4/3912348140610.1088/0967-3334/34/4/391MargoCKatribJNadiMRouaneAA four-electrode low frequency impedance spectroscopy measurement system using the AD5933 measurement chipPhysiological Measurement2013344391dx.doi.org/10.1088/0967-3334/34/4/391Search in Google Scholar

Travis J, Kring J. LabVIEW for Everyone: Graphical Programming Made Easy and Fun, 3 Ed. PHI.TravisJKringJ LabVIEW for Everyone: Graphical Programming Made Easy and Fun3 EdPHISearch in Google Scholar

Sugihara H, Oka H, Shimono K, Ogawa R, Taketani M.. U.S. Patent No. RE37,977. Washington, DC: U.S. Patent and Trademark Office. 2003.SugiharaHOkaHShimonoKOgawaRTaketaniM.. U.SPatent No. RE37,977Washington, DCU.S. Patent and Trademark Office2003Search in Google Scholar

Maxwell JC. A Treatise on Electricity & Magnetism, vol. 1, London, Oxford Univ. Press. 1892, Chap. 10.MaxwellJCA Treatise on Electricity & MagnetismLondonOxford Univ. Press1892Chap. 10Search in Google Scholar

Martinsen ØG, Grimnes S, Schwan HP. Biological Tissues: Interfacial and Dielectric Properties, Encyclopedia of Surface and Colloid Science, Volume 2, Ed Somasundaran, P. (2006). CRC press.MartinsenØGGrimnesSSchwanHPBiological Tissues: Interfacial and Dielectric Properties, Encyclopedia of Surface and Colloid ScienceVolume 2SomasundaranP.2006CRC pressSearch in Google Scholar

Franks W, Schenker I, Schmutz P, Hierlemann A. Impedance Characterization and Modeling of Electrodes for Biomedical Applications, IEEE Trans. Biomed. Eng. 2005; 52(7): 12951302. dx.doi.org/10.1109/TBME.2005.847523FranksWSchenkerISchmutzPHierlemannAImpedance Characterization and Modeling of Electrodes for Biomedical Applications, IEEE TransBiomed. Eng200552712951302dx.doi.org/10.1109/TBME.2005.847523Open DOISearch in Google Scholar

Tränkler HR, Kanoun O, Min M, Rist M. Smart sensor systems using impedance spectroscopy. Proc. Estonian Acad. Sci. Eng. 2007; 13(4): 455–478.TränklerHRKanounOMinMRistMSmart sensor systems using impedance spectroscopyProc. Estonian Acad. Sci. Eng2007134455478Search in Google Scholar

Lasia A. Electrochemical Impedance Spectroscopy and Its Applications, Modern Aspects of Electrochemistry, B. E. Conway, J. Bockris, and R.E. White, Edts., Kluwer Academic/Plenum, Pub., NY, 1999, Vol. 32, p. 143-248.LasiaAElectrochemical Impedance Spectroscopy and Its Applications, Modern Aspects of ElectrochemistryConwayB. E.BockrisJ.WhiteR.E.Kluwer Academic/Plenum, Pub., NY1999Vol. 3214324810.1007/0-306-46916-2_2Search in Google Scholar

Schiffbauer J, Park S, Yossifon G. Electrical Impedance Spectroscopy of Microchannel-Nanochannel Interface Devices. Phys. Rev. Letters. 2013; 110: 204504. dx.doi.org/10.1103/PhysRevLett.110.20450410.1103/PhysRevLett.110.204504SchiffbauerJParkSYossifonGElectrical Impedance Spectroscopy of Microchannel-Nanochannel Interface DevicesPhys. Rev. Letters2013110204504dx.doi.org/10.1103/PhysRevLett.110.204504Open DOISearch in Google Scholar

Song J, Bazant MZ. Effects of Nanoparticle Geometry and Size Distribution on Diffusion Impedance of Battery Electrodes. J. Electrochem. Soc. 2013; 160(1): A15-A24. dx.doi.org/10.1149/2.023301jes10.1149/2.023301jesSongJBazantMZEffects of Nanoparticle Geometry and Size Distribution on Diffusion Impedance of Battery ElectrodesJ. Electrochem. Soc20131601A15A24dx.doi.org/10.1149/2.023301jesOpen DOISearch in Google Scholar

Qiao G, Hong Y, Ou J, Guan X. Corrosion monitoring of the RC structures in time domain: Part II. Recognition algorithm based on fractional derivative theory. Measurement. 2015; 67: 84–91. dx.doi.org/10.1016/j.measurement.2014.12.04810.1016/j.measurement.2014.12.048QiaoGHongYOuJGuanXCorrosion monitoring of the RC structures in time domain: Part II. Recognition algorithm based on fractional derivative theoryMeasurement2015678491dx.doi.org/10.1016/j.measurement.2014.12.048Open DOISearch in Google Scholar

Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F, Roberto Bueno P. Theoretical models for AC impedance of finite diffusion layers exhibiting low frequency dispersion. Journal of Electroanalytical Chemistry. 1999; 475: 152–163. dx.doi.org/10.1016/S0022-0728(99)00346-010.1016/S0022-0728(99)00346-0BisquertJGarcia-BelmonteGFabregat-SantiagoFRobertoBueno PTheoretical models for AC impedance of finite diffusion layers exhibiting low frequency dispersionJournal of Electroanalytical Chemistry1999475152163dx.doi.org/10.1016/S0022-0728(99)00346-0Open DOISearch in Google Scholar

Wessels JGH (1996) Fungal hydrophobins: proteins that function at an interface. Trends in Plant Science. 1996; 1: 9-15. dx.doi.org/10.1016/S1360-1385(96)80017-3WesselsJGH1996Fungal hydrophobins: proteins that function at an interfaceTrends in Plant Science. 19961915dx.doi.org/10.1016/S1360-1385(96)80017-310.1016/S1360-1385(96)80017-3Search in Google Scholar

Mouritsen OG, Bloom M. Models of Lipid-Protein Interactions in Membranes. Annual Review of Biophysics and Biomolecular Structure. 1993; 22: 145-171. dx.doi.org/10.1146/annurev.bb.22.060193.00104510.1146/annurev.bb.22.060193.0010458347987MouritsenOGBloomMModels of Lipid-Protein Interactions in MembranesAnnual Review of Biophysics and Biomolecular Structure199322145171dx.doi.org/10.1146/annurev.bb.22.060193.001045Open DOISearch in Google Scholar

Cole KS. Electric phase angle of cell membranes. J. Gen. Physiol. 1932; 15: 641-649. dx.doi.org/10.1085/jgp.15.6.64110.1085/jgp.15.6.641ColeKSElectric phase angle of cell membranesJ. Gen. Physiol193215641649dx.doi.org/10.1085/jgp.15.6.641Open DOISearch in Google Scholar

Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, G!omez JM, Heitmann BL, Kent-Smith L, Melchior JC, Pirlich M, Scharfetter H, Schols AMWJ, Pichard C. Bioelectrical impedance analysis - part I: review of principles and methods. Clinical Nutrition. 2004; 23: 1226–1243. dx.doi.org/10.1016/j.clnu.2004.06.00410.1016/j.clnu.2004.06.004KyleUGBosaeusIDe LorenzoADDeurenbergPEliaMG!omezJMHeitmannBLKent-SmithLMelchiorJCPirlichMScharfetterHScholsAMWJPichardCBioelectrical impedance analysis - part I: review of principles and methodsClinical Nutrition20042312261243dx.doi.org/10.1016/j.clnu.2004.06.004Open DOISearch in Google Scholar

Damez JL, Clerjon S, Abouelkaram S, Lepetit J. Dielectric behavior of beef meat in the 1–1500 kHz range: Simulation with the Fricke/Cole–Cole model. Meat Science. 2007; 77: 512–519. dx.doi.org/10.1016/j.meatsci.2007.04.02810.1016/j.meatsci.2007.04.028DamezJLClerjonSAbouelkaramSLepetitJDielectric behavior of beef meat in the 1–1500 kHz range: Simulation with the Fricke/Cole–Cole modelMeat Science200777512519dx.doi.org/10.1016/j.meatsci.2007.04.028Open DOISearch in Google Scholar

Garcıa-Alonso MC, Saldana L, Alonso C, Barranco V, Munoz-Morris MA, Escudero ML. In situ cell culture monitoring on a Ti–6Al–4V surface by electrochemical techniques. Acta Biomaterialia. 2009; 5: 1374–1384. dx.doi.org/10.1016/j.actbio.2008.11.0201911908510.1016/j.actbio.2008.11.020Garcıa-AlonsoMCSaldanaLAlonsoCBarrancoVMunoz-MorrisMAEscuderoMLIn situ cell culture monitoring on a Ti–6Al–4V surface by electrochemical techniquesActa Biomaterialia2009513741384dx.doi.org/10.1016/j.actbio.2008.11.020Search in Google Scholar

Pliquett U, Altmann M, Pliquett F, Schoberlein L. Py – a parameter for meat quality. Meat Science. 2003; 65: 1429–37. dx.doi.org/10.1016/S0309-1740(03)00066-410.1016/S0309-1740(03)00066-4PliquettUAltmannMPliquettFSchoberleinLPy – a parameter for meat qualityMeat Science200365142937dx.doi.org/10.1016/S0309-1740(03)00066-4Open DOISearch in Google Scholar

Fernández-Segovia I, Fuentes A, Ali-o M, Masot R, Alca-iz M, Barat JM. Detection of frozen-thawed salmon (Salmo salar) by a rapid low-cost method. Journal of Food Engineering. 2012; 113: 210–216. dx.doi.org/10.1016/j.jfoodeng.2012.06.00310.1016/j.jfoodeng.2012.06.003Fernández-SegoviaIFuentesAAli-oMMasotRAlca-izMBaratJMDetection of frozen-thawed salmon (Salmo salar) by a rapid low-cost methodJournal of Food Engineering2012113210216dx.doi.org/10.1016/j.jfoodeng.2012.06.003Open DOISearch in Google Scholar

Valero A, Braschler T, Renaud P. A unified approach to dielectric single cell analysis: Impedance and dielectrophoretic force spectroscopy. Lab on a Chip. 2010;10(17): 2216-2225. dx.doi.org/10.1039/c003982a10.1039/c003982a20664865ValeroABraschlerTRenaudPA unified approach to dielectric single cell analysis: Impedance and dielectrophoretic force spectroscopyLab on a Chip2010101722162225dx.doi.org/10.1039/c003982a20664865Open DOISearch in Google Scholar

Wilson EB. The structure of protoplasm. Science. 1899; 10: 33–45. dx.doi.org/10.1126/science.10.237.3310.1126/science.10.237.3317829686WilsonEBThe structure of protoplasmScience1899103345dx.doi.org/10.1126/science.10.237.3317829686Open DOISearch in Google Scholar

Luby-Phelps K. The physical chemistry of cytoplasm and its influence on cell function: an update. Mol. Biol. Cell. 2013; 24(17): 2593-6. dx.doi.org/10.1091/mbc.E12-08-06172398972210.1091/mbc.e12-08-0617Luby-PhelpsK.The physical chemistry of cytoplasm and its influence on cell function: an updateMol. Biol. Cell2013241725936dx.doi.org/10.1091/mbc.E12-08-0617Search in Google Scholar

Zhang MIN, Stout DG, Willison JHM. Plant Tissue Impedance and Cold Acclimation: A Re-analysis. Journal of Experimental Botany. 1992; 43(247): 263-266. dx.doi.org/10.1093/jxb/43.2.263ZhangMINStoutDGWillisonJHMPlant Tissue Impedance and Cold Acclimation: A Re-analysisJournal of Experimental Botany199243247263266dx.doi.org/10.1093/jxb/43.2.263Open DOISearch in Google Scholar

Zhang MIN, Willison JHM. Electrical Impedance Analysis in Plant Tissues: Impedance Measurement in Leaves. Journal of Experimental Botany 1993; 44(265): 1369-1375. dx.doi.org/10.1093/jxb/44.8.136910.1093/jxb/44.8.1369ZhangMINWillisonJHMElectrical Impedance Analysis in Plant Tissues: Impedance Measurement in LeavesJournal of Experimental Botany19934426513691375dx.doi.org/10.1093/jxb/44.8.1369Open DOISearch in Google Scholar

Buendia R, Gil-Pita R, Seoane F. Cole parameter estimation from the modulus of the electrical bioimpeadance for assessment of body composition. A full spectroscopy approach. J Electr. Bioimp. 2011; 2; 72-78. dx.doi.org/10.5617/joeb.197BuendiaRGil-PitaRSeoaneFCole parameter estimation from the modulus of the electrical bioimpeadance for assessment of body compositionA full spectroscopy approach. J Electr. Bioimp201127278dx.doi.org/10.5617/joeb.197Open DOISearch in Google Scholar

Fricke H, Morse S. The electric resistance and capacity of blood for frequencies between 800 and 4 ½ million cycles. J. General Physiol. 1925; 9(2): 153–167. dx.doi.org/10.1085/jgp.9.2.15310.1085/jgp.9.2.153FrickeHMorseSThe electric resistance and capacity of blood for frequencies between 800 and 4 ½ million cyclesJ. General Physiol192592153167dx.doi.org/10.1085/jgp.9.2.153Open DOISearch in Google Scholar

Cole KS, Cole RH. Dispersion and absorption in dielectrics I. Alternating current characteristics. Journal of Chemical Physics. 1941; 9(4); 341-351. dx.doi.org/10.1063/1.175090610.1063/1.1750906ColeKSColeRHDispersion and absorption in dielectrics I. Alternating current characteristicsJournal of Chemical Physics194194341351dx.doi.org/10.1063/1.1750906Open DOISearch in Google Scholar

Kuang W, Nelson SO. Low-Frequency Dielectric Properties of Biological Tissues: A Review with Some New Insights. Transactions of the ASAE. 1998; 41(1); 173. dx.doi.org/10.13031/2013.1714210.13031/2013.17142KuangWNelsonSOLow-Frequency Dielectric Properties of Biological Tissues: A Review with Some New InsightsTransactions of the ASAE1998411173dx.doi.org/10.13031/2013.17142Open DOISearch in Google Scholar

Gabriel C, Gabriel S, Courhout E. The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol. 1996; 41(11): 2231-2249. dx.doi.org/10.1088/0031-9155/41/11/00110.1088/0031-9155/41/11/001GabrielCGabrielSCourhoutEThe dielectric properties of biological tissues: ILiterature survey. Phys Med Biol1996411122312249dx.doi.org/10.1088/0031-9155/41/11/001Open DOISearch in Google Scholar

Powles JG. Cole-Cole plots as they should be. Journal of Molecular Liquids. 1993; 56: 35-47. dx.doi.org/10.1016/0167-7322(93)80017-P10.1016/0167-7322(93)80017-PPowlesJGCole-Cole plots as they should beJournal of Molecular Liquids1993563547dx.doi.org/10.1016/0167-7322(93)80017-POpen DOISearch in Google Scholar

Bera TK, Nagaraju J, Lubineau G. Electrical Impedance Spectroscopy (EIS) Based Evaluation of Biological Tissues Phantoms to Study the Multifrequency Electrical Impedance Tomography (Mf-EIT) Systems. Journal of Visualization. 2016; 19(4): 691–713. dx.doi.org/10.1007/s12650-016-0351-010.1007/s12650-016-0351-0BeraTKNagarajuJLubineauGElectrical Impedance Spectroscopy (EIS) Based Evaluation of Biological Tissues Phantoms to Study the Multifrequency Electrical Impedance Tomography (Mf-EIT) SystemsJournal of Visualization2016194691713dx.doi.org/10.1007/s12650-016-0351-0Open DOISearch in Google Scholar

Han L, Koide N, Chiba Y, Mitate T. Modeling of an equivalent circuit for dye-sensitized solar cells. Applied Physics Letters. 2004; 84(13): 2433-2435. dx.doi.org/10.1063/1.169049510.1063/1.1690495HanLKoideNChibaYMitateTModeling of an equivalent circuit for dye-sensitized solar cellsApplied Physics Letters2004841324332435dx.doi.org/10.1063/1.1690495Open DOISearch in Google Scholar

Kun S, Ristic B, Peura RA, Dunn RM. Real-time extraction of tissue impedance model parameters for electrical impedance spectrometer. Medical & Biological Engineering & Computing. 1999; 37(4): 428-432. dx.doi.org/10.1007/BF0251332510.1007/BF0251332510696697KunSRisticBPeuraRADunnRMReal-time extraction of tissue impedance model parameters for electrical impedance spectrometerMedical & Biological Engineering & Computing1999374428432dx.doi.org/10.1007/BF0251332510696697Open DOISearch in Google Scholar

Mellert F, Winkler K, Schneider C, Dudykevych T, Welz A, Osypka M, Gersing E, Preusse CJ. Detection of (Reversible) Myocardial Ischemic Injury by Means of Electrical Bioimpedance, IEEE Trans. Biomed. Eng. 2011; 58(6): 1511-1518. dx.doi.org/10.1109/TBME.2010.2054090MellertFWinklerKSchneiderCDudykevychTWelzAOsypkaMGersingEPreusseCJDetection of (Reversible) Myocardial Ischemic Injury by Means of Electrical Bioimpedance, IEEE TransBiomed. Eng201158615111518dx.doi.org/10.1109/TBME.2010.2054090Open DOISearch in Google Scholar

Casas O, Bragos R, Riu PJ, Rosell J, Tresanchez M, Warren M, Rodriguez-Sinovas A, Carre-o A, Cinca J. In vivo and in situ ischemic tissue characterization using electrical impedance spectroscopy. Annals of the New York Academy of Sciences. 1999; 873(1): 51-58. dx.doi.org/10.1111/j.1749-6632.1999.tb09448.x10.1111/j.1749-6632.1999.tb09448.x10372149CasasOBragosRRiuPJRosellJTresanchezMWarrenMRodriguez-SinovasACarre-oACincaJIn vivo and in situ ischemic tissue characterization using electrical impedance spectroscopyAnnals of the New York Academy of Sciences199987315158dx.doi.org/10.1111/j.1749-6632.1999.tb09448.x10372149Open DOISearch in Google Scholar

Rigaud B, Hamzaoui L, Frikha MR, Chauveau N, Morucci JP. In vitro tissue characterization and modelling using electrical impedance measurements in the 100 Hz-10 MHz frequency range. Physiological Measurement. 1995; 16(3A): A15. dx.doi.org/10.1088/0967-3334/16/3A/00210.1088/0967-3334/16/3A/002RigaudBHamzaouiLFrikhaMRChauveauNMorucciJPIn vitro tissue characterization and modelling using electrical impedance measurements in the 100 Hz-10 MHz frequency rangePhysiological Measurement1995163AA15dx.doi.org/10.1088/0967-3334/16/3A/002Open DOISearch in Google Scholar

Han A, Yang L, Frazier AB. Quantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopy. Clinical Cancer Research. 2007; 3(1): 139-143. dx.doi.org/10.1158/1078-0432.CCR-06-1346HanAYangLFrazierABQuantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopyClinical Cancer Research200731139143dx.doi.org/10.1158/1078-0432.CCR-06-1346Open DOISearch in Google Scholar

Instruction Manual, 7600 Precision LCR Meter, Model B, QuadTech, Inc., 5 Clock Tower Place, 210 East Maynard, Massachusetts, U.S.A. 01754-2530, October, 2002.Instruction Manual, 7600 Precision LCR MeterModelBQuadTech, Inc., 5 Clock Tower Place, 210 East Maynard, MassachusettsU.S.A0175425302002Search in Google Scholar

Chang Z, Pop GAM, Meijer GCM. A Comparison of Two-and Four-Electrode Techniques to Characterize Blood Impedance for the Frequency Range of 100 Hz to 100 MHz, IEEE Trans. Biomed. Eng. 2008; 55(3): 1247-1249. dx.doi.org/10.1109/TBME.2008.915725ChangZPopGAMMeijerGCMA Comparison of Two-and Four-Electrode Techniques to Characterize Blood Impedance for the Frequency Range of 100 Hz to 100 MHz, IEEE TransBiomed. Eng200855312471249dx.doi.org/10.1109/TBME.2008.915725Open DOISearch in Google Scholar

Bera TK, Mohamadou Y, Lee KH, Wi H, Oh TI, Eung EJ, Soleimani M, Seo JK. Electrical Impedance Spectroscopy for Electro-mechanical Characterization of Conductive Fabrics. Sensors. 2014; 14: 9738-9754. dx.doi.org/10.3390/s14060973810.3390/s14060973824892493BeraTKMohamadouYLeeKHWiHOhTIEungEJSoleimaniMSeoJKElectrical Impedance Spectroscopy for Electro-mechanical Characterization of Conductive FabricsSensors20141497389754dx.doi.org/10.3390/s140609738411834124892493Open DOISearch in Google Scholar

Yúfera A, Rueda A. A Method for Bioimpedance Measure With Four- and Two-Electrode Sensor Systems, 30th Annual International IEEE EMBS Conference Vancouver, British Columbia, Canada, August 20-24, 2008, pp 2318-2321. dx.doi.org/10.1109/iembs.2008.4649662YúferaARuedaAA Method for Bioimpedance Measure With Four- and Two-Electrode Sensor Systems30th Annual International IEEE EMBS Conference VancouverBritish Columbia, CanadaAugust 20-24200823182321dx.doi.org/10.1109/iembs.2008.4649662Open DOISearch in Google Scholar

Bera TK and Nagaraju J. A MATLAB-Based Boundary Data Simulator for Studying the Resistivity Reconstruction Using Neighbouring Current Pattern. Journal of Medical Engineering. 2013; Article ID 193578; 15 pages. dx.doi.org/10.1155/2013/19357827006909BeraTKNagarajuJ. AMATLAB-Based Boundary Data Simulator for Studying the Resistivity Reconstruction Using Neighbouring Current PatternJournal of Medical Engineering2013Article ID 193578; 15 pagesdx.doi.org/10.1155/2013/19357810.1155/2013/193578478261927006909Search in Google Scholar

Clemente F, Romano M, Bifulco P, Cesarelli M. EIS measurements for characterization of muscular tissue by means of equivalent electrical parameter. Measurement. 2014; 58: 476-482. dx.doi.org/10.1016/j.measurement.2014.09.01310.1016/j.measurement.2014.09.013ClementeFRomanoMBifulcoPCesarelliMEIS measurements for characterization of muscular tissue by means of equivalent electrical parameterMeasurement201458476482dx.doi.org/10.1016/j.measurement.2014.09.013Open DOISearch in Google Scholar

Clemente F, Arpaia P, Manna C. Characterization of human skin impedance after electrical treatment for transdermal drug delivery. Measurement. 2013; 46(9): 3494-3501. dx.doi.org/10.1016/j.measurement.2013.06.03310.1016/j.measurement.2013.06.033ClementeFArpaiaPMannaCCharacterization of human skin impedance after electrical treatment for transdermal drug deliveryMeasurement201346934943501dx.doi.org/10.1016/j.measurement.2013.06.033Open DOISearch in Google Scholar

Mishra V, Bouyad H, Halter RJ. Electrical impedance-based biopsy for prostate cancer detection. In Bioengineering Conference (NEBEC), 2011 IEEE 37th Annual Northeast pp. 1-2, IEEE. dx.doi.org/10.1109/nebc.2011.5778712MishraVBouyadHHalterRJElectrical impedance-based biopsy for prostate cancer detectionIn Bioengineering Conference (NEBEC)2011IEEE 37th Annual Northeast12dx.doi.org/10.1109/nebc.2011.5778712Open DOISearch in Google Scholar

Chao PJ, Huang EY, Cheng KS, Huang YJ. Electrical impedance spectroscopy as electrical biopsy for monitoring radiation sequelae of intestine in rats. BioMed Research International. 2013; Article ID 974614, 7 pages. dx.doi.org/10.1155/2013/97461424093111ChaoPJHuangEYChengKSHuangYJElectrical impedance spectroscopy as electrical biopsy for monitoring radiation sequelae of intestine in ratsBioMed Research International2013Article ID 974614, 7 pagesdx.doi.org/10.1155/2013/97461410.1155/2013/974614377717124093111Search in Google Scholar

Keshtkar, A., Salehnia, Z., Keshtkar, A., & Shokouhi, B. Bladder cancer detection using electrical impedance technique (tabriz mark 1). Pathology research international, 2012; Article ID 470101, 5 pages. dx.doi.org/10.1155/2012/47010122567538KeshtkarA.SalehniaZ.KeshtkarA.ShokouhiB.Bladder cancer detection using electrical impedance technique (tabriz mark 1)Pathology research international2012Article ID 470101, 5 pagesdx.doi.org/10.1155/2012/47010110.1155/2012/470101333749822567538Search in Google Scholar

Hope TA, Iles SE. Technology review: the use of electrical impedance scanning in the detection of breast cancer. Breast Cancer Research. 2004; 6(2): 69-74. dx.doi.org/10.1186/bcr744HopeTAIlesSETechnology review: the use of electrical impedance scanning in the detection of breast cancerBreast Cancer Research2004626974dx.doi.org/10.1186/bcr74410.1186/bcr74440064814979909Search in Google Scholar

Yang L, Bashir R. Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnology Advances. 2008; 26(2): 135-150. dx.doi.org/10.1016/j.biotechadv.2007.10.0031815587010.1016/j.biotechadv.2007.10.003YangLBashirRElectrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteriaBiotechnology Advances2008262135150dx.doi.org/10.1016/j.biotechadv.2007.10.00318155870Search in Google Scholar

Yang L, Li Y, Griffis CL, Johnson MG. Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. Biosensors and Bioelectronics. 2004; 19(10): 1139-1147. dx.doi.org/10.1016/j.bios.2003.10.00910.1016/j.bios.2003.10.009YangLLiYGriffisCLJohnsonMGInterdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimuriumBiosensors and Bioelectronics2004191011391147dx.doi.org/10.1016/j.bios.2003.10.00915046744Open DOISearch in Google Scholar

Cai D, Ren L, Zhao H, et al. A molecular-imprint nanosensor for ultrasensitive detection of proteins. Nature Nanotechnology. 2010; 5(8): 597-601. dx.doi.org/10.1038/nnano.2010.1142058183510.1038/nnano.2010.114CaiDRenLZhaoHA molecular-imprint nanosensor for ultrasensitive detection of proteinsNature Nanotechnology201058597601dx.doi.org/10.1038/nnano.2010.114306470820581835Search in Google Scholar

Pan S, Rothberg L. Chemical control of electrode functionalization for detection of DNA hybridization by electrochemical impedance spectroscopy. Langmuir. 2005; 21(3): 1022-1027. dx.doi.org/10.1021/la048083a1566718410.1021/la048083aPanSRothbergLChemical control of electrode functionalization for detection of DNA hybridization by electrochemical impedance spectroscopyLangmuir200521310221027dx.doi.org/10.1021/la048083a15667184Search in Google Scholar

Ollmar S, Emtestam L. Electrical impedance applied to non‐invasive detection of irritation in skin. Contact Dermatitis. 1992; 27(1): 37-42. dx.doi.org/10.1111/j.1600-0536.1992.tb05195.x10.1111/j.1600-0536.1992.tb05195.x1424589OllmarSEmtestamLElectrical impedance applied to non‐invasive detection of irritation in skinContact Dermatitis19922713742dx.doi.org/10.1111/j.1600-0536.1992.tb05195.x1424589Open DOISearch in Google Scholar

Longbottom C, Huysmans MCD, Pitts NB, Los P, Bruce PG. Detection of dental decay and its extent using AC impedance spectroscopy. Nature Medicine. 1996; 2(2), 235-237. dx.doi.org/10.1038/nm0296-23510.1038/nm0296-235LongbottomCHuysmansMCDPittsNBLosPBrucePGDetection of dental decay and its extent using AC impedance spectroscopyNature Medicine199622235237dx.doi.org/10.1038/nm0296-2358574971Open DOISearch in Google Scholar

Tidy JA, Brown BH, Healey TJ, Daayana S, Martin M, Prendiville W, Kitchener HC. Accuracy of detection of high‐grade cervical intraepithelial neoplasia using electrical impedance spectroscopy with colposcopy. International Journal of Obstetrics & Gynaecology. 2013; 120(4): 400-411. dx.doi.org/10.1111/1471-0528.1209610.1111/1471-0528.12096TidyJABrownBHHealeyTJDaayanaSMartinMPrendivilleWKitchenerHCAccuracy of detection of high‐grade cervical intraepithelial neoplasia using electrical impedance spectroscopy with colposcopyInternational Journal of Obstetrics & Gynaecology20131204400411dx.doi.org/10.1111/1471-0528.12096359799323289897Open DOISearch in Google Scholar

Keshtkar A, Keshtkar A, Smallwood RH. Electrical impedance spectroscopy and the diagnosis of bladder pathology. Physiological Measurement. 2006; 27(7): 585. dx.doi.org/10.1088/0967-3334/27/7/00310.1088/0967-3334/27/7/003KeshtkarAKeshtkarASmallwoodRHElectrical impedance spectroscopy and the diagnosis of bladder pathologyPhysiological Measurement2006277585dx.doi.org/10.1088/0967-3334/27/7/00316705257Open DOISearch in Google Scholar