Open Access

Positive phase error from parallel conductance in tetrapolar bio-impedance measurements and its compensation


Cite

Grimnes S, Martinsen ØG. Bioimpedance and Bioelectricity Basics. San Diego, CA: Academic Press; 2000.GrimnesSMartinsenØGBioimpedance and Bioelectricity BasicsSan Diego, CAAcademic Press200010.1016/B978-012303260-7/50009-5Search in Google Scholar

Schwan H. Electrode Polarization Impedance and Measurements in biological materials. Annals of the New York Academy of Sciences. 1968 ;148(1):191. Available from: http://www.ncbi.nlm.nih.gov/pubmed/523764110.1111/j.1749-6632.1968.tb20349.x5237641SchwanHElectrode Polarization Impedance and Measurements in biological materialsAnnals of the New York Academy of Sciences19681481191Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/52376415237641Open DOISearch in Google Scholar

Mazzeo B a. Parasitic capacitance influence of potentialsensing electrodes on four-electrode liquid impedance measurements. Journal of Applied Physics. 2009 ;105(9):094106. Available from: http://link.aip.org/link/JAPIAU/v105/i9/p094106/s110.1063/1.3124365MazzeoB aParasitic capacitance influence of potentialsensing electrodes on four-electrode liquid impedance measurementsJournal of Applied Physics20091059094106Available fromhttp://link.aip.org/link/JAPIAU/v105/i9/p094106/s1Open DOISearch in Google Scholar

Mazzeo B a, Flewitt AJ. Two- and four-electrode, wide-bandwidth, dielectric spectrometer for conductive liquids: Theory, limitations, and experiment. Journal of Applied Physics. 2007 ;102(10):104106. Available from: http://link.aip.org/link/JAPIAU/v102/i10/p104106/s110.1063/1.2815666MazzeoB aFlewittAJTwo- and four-electrode, wide-bandwidth, dielectric spectrometer for conductive liquids: Theory, limitations, and experimentJournal of Applied Physics200710210104106Available fromhttp://link.aip.org/link/JAPIAU/v102/i10/p104106/s1Open DOISearch in Google Scholar

Grimnes S, Martinsen ØG. Sources of error in tetrapolar impedance measurements on biomaterials and other ionic conductors. Journal of Physics D: Applied Physics. 2007 Jan ;40(1):9-14. Available from: http://dx.doi.org/10.1088/0022-3727/40/1/S0210.1088/0022-3727/40/1/S02GrimnesSMartinsenØGSources of error in tetrapolar impedance measurements on biomaterials and other ionic conductorsJournal of Physics D: Applied Physics2007401914Available fromhttp://dx.doi.org/10.1088/0022-3727/40/1/S02Open DOISearch in Google Scholar

Gersing E, Schafer M, Osypka M. The appearance of positive phase angles in impedance measurements on extended biological objects. In: Innovation et technologie en biologie et médecine. ASTEC/ITBM; 1995, p. 71-76. Available from: http://cat.inist.fr/?aModele=afficheN&cpsidt=3694830GersingESchaferMOsypkaMThe appearance of positive phase angles in impedance measurements on extended biological objectsInnovation et technologie en biologie et médecine. ASTEC/ITBM19957176Available fromhttp://cat.inist.fr/?aModele=afficheN&cpsidt=3694830Search in Google Scholar

Geselowitz DB. An application of electrocardiographic lead theory to impedance plethysmography. [Internet]. IEEE transactions on bio-medical engineering. 1971 Jan ;18(1):38-41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/5545046GeselowitzDBAn application of electrocardiographic lead theory to impedance plethysmography. [Internet]IEEE transactions on bio-medical engineering19711813841Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/554504610.1109/TBME.1971.4502787Search in Google Scholar

Brown BH, Wilson AJ, Bertemes-Filho P. Bipolar and tetrapolar transfer impedance measurements from volume conductor. Electronics Letters. 2000 ;36(25):2060. Available from: http://link.aip.org/link/ELLEAK/v36/i25/p2060/s110.1049/el:20001439BrownBHWilsonAJBertemes-FilhoPBipolar and tetrapolar transfer impedance measurements from volume conductorElectronics Letters200036252060Available fromhttp://link.aip.org/link/ELLEAK/v36/i25/p2060/s1Open DOISearch in Google Scholar

Bronzino JD. The biomedical engineering handbook. 2000. Available from: http://books.google.com/books?id=ijhP6BZxCMACBronzinoJDThe biomedical engineering handbook2000Available fromhttp://books.google.com/books?id=ijhP6BZxCMACSearch in Google Scholar

Wegener J, Keese CR, Giaever I. Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. [Internet]. Experimental cell research. 2000 Aug ;259(1):158-66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1094258810.1006/excr.2000.4919WegenerJKeeseCRGiaeverIElectric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces[Internet]. Experimental cell research2000259115866Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1094258810942588Open DOISearch in Google Scholar

Brag—s R, Sarro E, Fontova a, Soley a, Cairό J, Bayés-Genίs a, et al. Four versus two-electrode measurement strategies for cell growing and differentiation monitoring using electrical impedance spectroscopy. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference. 2006 Jan ;12106-9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17946497Brag—sRSarroEFontovaaSoleyaCairόJBayés-GenίsaFour versus two-electrode measurement strategies for cell growing and differentiation monitoring using electrical impedance spectroscopyConference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology SocietyIEEE Engineering in Medicine and Biology Society. Conference2006Jan ;12106-9. Available fromhttp://www.ncbi.nlm.nih.gov/pubmed/1794649710.1109/IEMBS.2006.26028717946497Search in Google Scholar

Lagarias JC, Reeds J a, Wright MH, Wright PE. Convergence Properties of the Nelder--Mead Simplex Method in Low Dimensions. SIAM Journal on Optimization. 1998 ;9(1):112. Available from: http://link.aip.org/link/SJOPE8/v9/i1/p112/s110.1137/S1052623496303470LagariasJCReeds JaWrightMHWrightPEConvergence Properties of the Nelder--Mead Simplex Method in Low DimensionsSIAM Journal on Optimization199891112Available fromhttp://link.aip.org/link/SJOPE8/v9/i1/p112/s1Open DOISearch in Google Scholar

Fricke H. The theory of electrolytic polarization. Philosophical Magazine Series 7. 1932 ;14(90):310-318. Available from: http://www.informaworld.com/10.1080/1478644320946206410.1080/14786443209462064FrickeHThe theory of electrolytic polarizationPhilosophical Magazine Series 719321490310318Available fromhttp://www.informaworld.com/10.1080/14786443209462064Open DOISearch in Google Scholar

Brug G, Den Eeden ALG van, Sluyters-Rehbach M, Sluyters J. The analysis of electrode impedances complicated by the presence of a constant phase element. Journal of Electroanalytical Chemistry. 1984 ;176(1-2):275-295. Available from: http://dx.doi.org/10.1016/S0022-0728(84)80324-110.1016/S0022-0728(84)80324-1BrugGDenEeden ALG vanSluyters-RehbachMSluytersJThe analysis of electrode impedances complicated by the presence of a constant phase elementJournal of Electroanalytical Chemistry19841761-2275295Available fromhttp://dx.doi.org/10.1016/S0022-0728(84)80324-1Open DOISearch in Google Scholar

Pliquett U, Frense D, Schönfeldt M, Fratzer C, Zhang Y, Cahill B, et al. Testing miniaturized electrodes for impedance measurements within the beta-dispersion - a practical approach. Journal of Electrical Bioimpedance. 2010 ;141-55. Available from: http://tinyurl.com/2vuaea2PliquettUFrenseDSchönfeldtMFratzerCZhangYCahillBTesting miniaturized electrodes for impedance measurements within the beta-dispersion - a practical approachJournal of Electrical Bioimpedance201014155Available fromhttp://tinyurl.com/2vuaea2Search in Google Scholar