1. bookVolume 65 (2016): Issue 2 (June 2016)
Journal Details
License
Format
Journal
eISSN
2544-4646
First Published
04 Mar 1952
Publication timeframe
4 times per year
Languages
English
access type Open Access

Characterization of Bacteria Isolation of Bacteria from Pinyon Rhizosphere, Producing Biosurfactants from Agro-Industrial Waste

Published Online: 07 Jun 2016
Volume & Issue: Volume 65 (2016) - Issue 2 (June 2016)
Page range: 183 - 189
Received: 12 Jun 2015
Accepted: 17 Sep 2015
Journal Details
License
Format
Journal
eISSN
2544-4646
First Published
04 Mar 1952
Publication timeframe
4 times per year
Languages
English
Abstract

Two hundred and fifty bacterial strains were isolated from pinyon rhizosphere and screened for biosurfactants production. Among them, six bacterial strains were selected for their potential to produce biosurfactants using two low cost wastes, crude glycerol and lactoserum, as raw material. Both wastes were useful for producing biosurfactants because of their high content in fat and carbohydrates. The six strains were identified by 16S rDNA with an identity percentage higher than 95%, three strains belonged to Enterobacter sp., Pseudomonas aeruginosa, Bacillus pumilus and Rhizobium sp. All strains assayed were able to grow and showed halos around the colonies as evidence of biosurfactants production on Cetyl Trimethyl Ammonium Bromide agar with crude glycerol and lactoserum as substrate. In a mineral salt liquid medium enriched with both wastes, the biosurfactants were produced and collected from free cell medium after 72 h incubation. The biosurfactants produced reduced the surface tension from 69 to 30 mN/m with an emulsification index of diesel at approximately 60%. The results suggest that biosurfactants produced by rhizosphere bacteria from pinyon have promising environmental applications.

Keywords

Abbasi H., M. Hamedi, T.B. Lotfabad, H.S. Zahiri, H. Sharafi, F. Masoomi, A. Moosavi-Movahedi, A. Ortiz, M. Amanlou and K. Noghabi. 2012. Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: Physicochemical and structural characteristics of isolated biosurfactant. J. Biosci. Bioeng. 113: 211–219. Search in Google Scholar

Abbasi H., K.A. Noghabib, M.M. Hamedia, H.S. Zahiri, A.A. Moosavi-Movahedi, M. Amanlou, J.A. Teruel and A. Ortiz. 2013. Physicochemical characterization of a monorhamnolipid secreted by Pseudomonas aeruginosa MA01 in aqueous media. An experimental and molecular dynamics study. Coll. Surf. B: Biointerf. 101: 256–265.10.1016/j.colsurfb.2012.06.035 Search in Google Scholar

Abou-Kheira A. and N. Atta. 2009. Response of Jatropha curcas L. to water deficit: Yield, water use efficiency and oilseed characteristics. Biomass Bioenerg. 33: 1343–1350. Search in Google Scholar

APHA. 2001. Revisions to Standard Methods for the Examination of Water and Wastewater, Washington, DC. Search in Google Scholar

Al-Bahry S.N., Y.M. Al-Wahaibi, A.E. Elshafie, A.S. Al-Bemani, S.J. Joshi, H.S. Al-Makhmari and H.S. Al-Sulaimani. 2013. Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. Int. Biodeterior. Biodegradation. 81: 141–146.10.1016/j.ibiod.2012.01.006 Search in Google Scholar

Banat I., R. Makkar and S. Cameotra. 2000. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 53: 495–508.10.1007/s002530051648 Search in Google Scholar

Banat I., A. Franzetti, I. Gandolfi, G. Bestetti, M. Martinotti, J. Letizia, T. Smyth and R. Marchant. 2010. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 87: 427–444. Search in Google Scholar

Cassidy D. and A. Hudak. 2001. Microorganism selection and biosurfactant production in a continuously and periodically operated bioslurry reactor. J. Hazard. Mater. B84: 253–264.10.1016/S0304-3894(01)00242-4 Search in Google Scholar

da Silva G.P., M. Mack and J. Contiero. 2009. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27: 30–39.10.1016/j.biotechadv.2008.07.006 Search in Google Scholar

Desai J. and I. Banat. 1997. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61: 47–64.10.1128/mmbr.61.1.47-64.1997 Search in Google Scholar

Déziel E., F. Lepine, D. Dennie, D. Boismenu, O. Mamer and R. Villemur. 1999. Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim. Biophys. Acta. 1440: 244–252.10.1016/S1388-1981(99)00129-8 Search in Google Scholar

Dubey K.V., P.N. Charde, S.U. Meshram, L.P. Shendre, V.S. Dubey and A.A. Juwarkar. 2012. Surface-active potential of biosurfactants produced in curd whey by Pseudomonas aeruginosa strain-PP2 and Kocuria turfanesis strain-J at extreme environmental conditions. Bioresour. Technol. 126: 368–374.10.1016/j.biortech.2012.05.02422683199 Search in Google Scholar

Estrada de los Santos P., R. Bustillos-Cristales and J. Caballero-Mellado. 2001. Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl. Environ. Microbiol. 67: 2790–2798. Search in Google Scholar

Ferhat S., S. Mnif, A. Badis, K. Eddouaouda, R. Alouaouic, A. Boucherit, N. Mhiri, N. Moulai-Mostefa and S. Sayadi. 2011. Screening and preliminary characterization of biosurfactants produced by Ochrobactrum sp. 1C and Brevibacterium sp. 7G isolated from hydrocarbon-contaminated soils. Int. Biodeterior. Biodegradation. 65: 1182–1188.10.1016/j.ibiod.2011.07.013 Search in Google Scholar

Fonseca P.F., T.F. Ferreira, G. Cardoso Fontes and M.A. Zarur Coelho. 2009. Glycerol valorization: New biotechnological routes. Food Bioprod. Process. 87: 179–186.10.1016/j.fbp.2009.03.008 Search in Google Scholar

Fonseca A., D.S. Teodoro-Martinez, G. Nazareno, B. Gontijo, Í. Serrano, J.S. Garcia, M.R. Tótolac, M.N. Eberlin, M. Gross-mand, O.L. Alves and others. 2011. Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochem. 46: 1951–1957.10.1016/j.procbio.2011.07.001 Search in Google Scholar

Freitas D., Í. Lima, A. Nogueira, J. Lima, M. Aparecida, V. Melo and L. Barros. 2013. Kinetic study of biosurfactant production by Bacillus subtilis LAMI005 grown in clarified cashew apple juice. Colloids Surf. B Biointerfaces. 101: 34–43.10.1016/j.colsurfb.2012.06.011 Search in Google Scholar

Gudiña E., J. Pereira, R. Costa, J. Coutinho, J. Teixeira and L. Rodríguez. 2013. Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-packed columns. J. Hazard. Mater. 261: 106–113.10.1016/j.jhazmat.2013.06.071 Search in Google Scholar

Gudiña E.J., A.I. Rodrigues, E. Alves, M.R. Domingues, J.A. Teixeira and L.R. Rodrigues. 2015. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Bioresour. Technol. 177: 87–93.10.1016/j.biortech.2014.11.069 Search in Google Scholar

Jain R.M., K. Modya, N. Joshi, A. Mishra and B. Jha. 2013a. Production and structural characterization of biosurfactant produced by an alkaliphilic bacterium, Klebsiella sp.: Evaluation of different carbon sources. Colloids Surf. B Biointerfaces. 108: 199–204. Search in Google Scholar

Jain R.M., M. Kalpana, J. Nidhi, M. Avinash and J. Bhavanath. 2013b. Effect of unconventional carbon sources on biosurfactant productionand its application in bioremediation. Int. J. Biol. Macromol. 62: 52–58.10.1016/j.ijbiomac.2013.08.030 Search in Google Scholar

Karanth N.G.K., P.G. Deo and N.K. Veenanadig. 1999. Microbial production of biosurfactants and their importance. Curr. Sci. 77: 116–125. Search in Google Scholar

Kitamoto D., H. Isoda and T. Nakahara. 2002. Functions and potential applications of glycolipid biosurfactants from energy-saving materials to gene delivery carriers. J. Biosc. Bioeng. 94: 187–201.10.1016/S1389-1723(02)80149-9 Search in Google Scholar

Liu Y., M. Chong, J. Koh and L. Ji. 2011. Bioconversion of crude glycerol to glycolipids in Ustilago maydis. Bioresour. Technol. 102: 3927–3933.10.1016/j.biortech.2010.11.11521186122 Search in Google Scholar

Makkar R.S. and S.S. Cameotra. 2002. An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl. Microbiol. Biotechnol. 58: 428–434.10.1007/s00253-001-0924-111954787 Search in Google Scholar

Nalini S. and R. Parthasarathi. 2014. Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent. Bioresour. Technol. 173: 231–238.10.1016/j.biortech.2014.09.05125305653 Search in Google Scholar

Pereira A.G., G.J. Pacheco, L.F. Tavares, B.C. Neves, F.A. Kronem-berger, R.S. Reis and D.M.G. Freire. 2013. Optimization of biosurfactant production using waste from biodiesel industry in a new membrane assisted bioreactor. Process Biochem. 48: 1271–1278.10.1016/j.procbio.2013.06.028 Search in Google Scholar

Pérez J., O. Anaya, C. Chang, I. Membrillo and G. Calva. 2010. Biosurfactants production by free-living bacteria nitrogen fixers growing on hydrocarbon (in Spanish). Rev. CENIC Cienc. Quím. 41: 1–9. Search in Google Scholar

Prieto L.M, M. Michelon, J.F.M. Burkert, S.J. Kalil and C.A.V. Burkert. 2008. The production of rhamnolipid by a Pseudomonas aeruginosa strain isolated from a southern coastal zone in Brazil. Chemosphere. 71: 1781–1785.10.1016/j.chemosphere.2008.01.00318289632 Search in Google Scholar

Rocha e Silva N.M.P., R.D. Rufino, J.M. Luna, V.A. Santos and L.A. Sarubbo. 2014. Screening of Pseudomonas species for biosurfactant production using low-cost substrates. Biocatal. Agric. Biotechnol. 3: 132–139.10.1016/j.bcab.2013.09.005 Search in Google Scholar

Ron E. and E. Rosenberg. 2001. Natural roles of biosurfactants. Environ. Microbiol. 3: 229–236.10.1046/j.1462-2920.2001.00190.x11359508 Search in Google Scholar

Rosenberg E. and E. Ron. 1999. High- and low-molecular-mass microbial surfactants. Appl. Microbiol. Biotechnol. 52: 154–162.10.1007/s00253005150210499255 Search in Google Scholar

Rywinska A., P. Juszczyk, M. Wojtatowicz, M. Robak, Z. Lazar, L. Tomaszewska and W. Rymowicz. 2013. Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications. Biomass bioenergy 48: 148–166.10.1016/j.biombioe.2012.11.021 Search in Google Scholar

SAGARPA. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. 2007. Servicio de Información Agroalimentaria y Pesquera (SIAP) (México). Disponible en: http://www.siap.sagarpa.gob.mx/. 2015.06.10. Search in Google Scholar

Saitou N. and M. Nei. 1987. The Neiighbor-joining method: a new method for reconstructiong phylogenetic trees. Mol. Biol. Evol. 4: 406–425. Search in Google Scholar

Sastoque-Cala L., A.M. Cotes-Prado and A.M. Pedroza-Rodríguez. 2010. Effect of nutrients and fermentation conditions on the production of biosurfactants using rhizobacteria isolated from fique plants. Universitas Scientiarum. 15: 251–264.10.11144/javeriana.SC15-3.eona Search in Google Scholar

Siegmund I. and F. Wagner. 1991. New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol. Tech. 5: 265–268.10.1007/BF02438660 Search in Google Scholar

Smyth T., A. Perfumo, R. Marchant and I. Banat. 2010. Isolation and analysis of low molecular weight microbial glycolipids, pp. 3705–3723. In: Timmis K.N. (ed.). Handbook of hydrocarbon and lipid microbiology. Springer, Berlin.10.1007/978-3-540-77587-4_291 Search in Google Scholar

Soberón-Chávez G., F. Lépine and E. Déziel. 2005. Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Bio-technol. 68: 718–725.10.1007/s00253-005-0150-316160828 Search in Google Scholar

Valdez-Vazquez I., J.A. Acevedo-Benítez and C. Hernández-Santiago. 2010. Distribution and potential of bioenergy resources from agricultural activities in Mexico. Ren. Sust. Ener. Rev. 14: 2147–2153.10.1016/j.rser.2010.03.034 Search in Google Scholar

Vecino X., R. Devesa-Rey, J. Cruz and A. Moldes. 2013. Evaluation of biosurfactant obtained from Lactobacillus pentosus as foaming agent in froth flotation. J. Environ. Manage. 128: 655–660.10.1016/j.jenvman.2013.06.01123845959 Search in Google Scholar

Weisburg W., G. Barns, D.A. Pelletier and D.J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697–670.10.1128/jb.173.2.697-703.19912070611987160 Search in Google Scholar

Yañez-Ocampo G. and A. Wong-Villareal. 2013. Microbial biosurfactants, potential production with agroindustrial wastes of Chiapas (in Spanish). Bio Tecnología 17: 12–28. Search in Google Scholar

Youssef N., D. Simpson, K. Duncan, M. McInerney, M. Folmsbee, T. Fincher and R. Knapp. 2007. In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Appl. Environ. Microbiol. 73: 1239–1247.10.1128/AEM.02264-06182867217172458 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo