1. bookVolume 65 (2016): Issue 1 (March 2016)
Journal Details
License
Format
Journal
eISSN
2544-4646
First Published
04 Mar 1952
Publication timeframe
4 times per year
Languages
English
access type Open Access

Streptococcus anginosus (milleri) Group Strains Isolated in Poland (1996–2012) and their Antibiotic Resistance Patterns

Published Online: 15 Mar 2016
Volume & Issue: Volume 65 (2016) - Issue 1 (March 2016)
Page range: 33 - 41
Received: 01 Dec 2015
Accepted: 21 Dec 2015
Journal Details
License
Format
Journal
eISSN
2544-4646
First Published
04 Mar 1952
Publication timeframe
4 times per year
Languages
English
Abstract

Streptococcus anginosus, Streptococcus intermedius and Streptococcus constellatus form a group of related streptococcal species, namely the Streptococcus Anginosus Group (SAG). The group, previously called “milleri” had been rarely described until 1980/1990 as source of infections. Nowadays SAG bacteria are often described as pathogens causing predominantly purulent infections. The number of infections is highly underestimated, as SAG strains are often classified in the microbiology laboratory as less virulent “viridans streptococci”. Epidemiological situation regarding SAG infections in Poland has been unrecognized, therefore we performed a retrospective analysis of strains isolated between 1996 and 2012. Strains suspected of belonging to SAG were re-identified using an automated biochemical approach (Vitek2) and MALDI-TOF MS. We performed first analysis of antibiotic resistance among SAG strains isolated in Poland using automated methods (Vitek2), disk diffusion tests and E-Tests. We also performed PCR detection of resistance determinants in antibiotic resistant strains. Clonal structure of analyzed strains was evaluated with PFGE and MLVF methods. All three species are difficult to distinguish using automated diagnostic methods and the same is true for automated MIC evaluation. Our analysis revealed SAG strains are rarely isolated in Poland, predominantly from purulent infections. All isolates are very diverse on the genomic level as estimated by PFGE and MLVF analyses. All analyzed strains are sensitive to penicillin, a substantial group of strains is resistant to macrolides and the majority of strains are resistant to tetracycline.

Keywords

Aminov R.I., N. Garrigues-Jeanjean and R.I. Mackie. 2001. Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Appl. Environ. Microbiol. 67: 22–32.10.1128/AEM.67.1.22-32.2001 Search in Google Scholar

Arinto-Garcia R., M.D. Pinho, J. Carrico, J. Melo-Cristino and M. Ramirez. 2015. Comparing MALDI-TOF MS, phenotypic and molecular methods for the identification of species within the Streptococcus anginosus group. J. Clin. Microbiol. 53(11): 3580–3588. Search in Google Scholar

Asam D. and B. Spellerberg. 2014. Molecular pathogenicity of Streptococcus anginosus. Mol. Oral Microbiol. 29: 145–155.10.1111/omi.12056 Search in Google Scholar

Charpentier E., G. Gerbaud and P. Courvalin. 1993. Characterization of a new class of tetracycline-resistance gene tet(S) in Listeria monocytogenes BM4210. Gene 131: 27–34.10.1016/0378-1119(93)90665-P Search in Google Scholar

Chen J.H., K.K. She, O.Y. Wong, J.L. Teng, W.C. Yam, S.K. Lau, P.C. Woo, V.C. Cheng and K.Y. Yuen. 2015. Use of MALDI Biotyperplus ClinProTools mass spectra analysis for correct identification of Streptococcus pneumoniae and Streptococcus mitis/oralis. J. Clin. Pathol. 68(8): 652–656. Search in Google Scholar

Chung W.O., K. Young, Z. Leng and M.C. Roberts. 1999. Mobile elements carrying ermF and tetQ genes in gram-positive and gramnegative bacteria. J. Antimicrob. Chemother. 44: 329–335.10.1093/jac/44.3.32910511399 Search in Google Scholar

Doherty N., K. Trzcinski, P. Pickerill, P. Zawadzki and C.G. Dowson. 2000. Genetic diversity of the tet(M) gene in tetracycline-resistant clonal lineages of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 44: 2979–2984.10.1128/AAC.44.11.2979-2984.200010158911036009 Search in Google Scholar

EUCAST. 2014. Breakpoint table for bacteria. http://www.eucast.org/clinical_breakpoints/, 2015.12.01. Search in Google Scholar

Giuliano S., G. Rubini, A. Conte, P. Goldoni, M. Falcone, A. Vena, M. Venditti and S. Morelli. 2012. Streptococcus anginosus group disseminated infection: case report and review of literature. Infez. Med. 20: 145–154. Search in Google Scholar

Glazunova O.O., D. Raoult and V. Roux. 2010. Partial recN gene sequencing: a new tool for identification and phylogeny within the genus Streptococcus. Int. J. Syst. Evol. Microbiol. 60: 2140–2148.10.1099/ijs.0.018176-019880633 Search in Google Scholar

Hoe N.P., R.M. Ireland, F.R. DeLeo, B.B. Gowen, D.W. Dorward, J.M. Voyich, M. Liu, E.H. Burns Jr., D.M. Culnan, A. Bretscher and others. 2002. Insight into the molecular basis of pathogen abundance: group A Streptococcus inhibitor of complement inhibits bacterial adherence and internalization into human cells. Proc. Natl. Acad. Sci. USA 99: 7646–7651.10.1073/pnas.11203989912431012032337 Search in Google Scholar

Kohler W. 2007. The present state of species within the genera Streptococcus and Enterococcus. Int. J. Med. Microbiol. 297: 133–150.10.1016/j.ijmm.2006.11.00817400023 Search in Google Scholar

Laupland K.B., T. Ross, D.L. Church and D.B. Gregson. 2006. Population-based surveillance of invasive pyogenic streptococcal infection in a large Canadian region. Clin. Microbiol. Infect. 12: 224–230.10.1111/j.1469-0691.2005.01345.x16451408 Search in Google Scholar

Obszanska K., I. Kern-Zdanowicz and I. Sitkiewicz. 2014. Virulence mechanisms factors and pathogenic of β-hemolytic streptococci (in Polish). Post. Mikrobiol. 53: 101–111. Search in Google Scholar

Obszanska K., I. Kern-Zdanowicz and I. Sitkiewicz. 2015a. MLVF analysis of anginosus (milleri) group streptococci. Diagn. Microbiol. Infect. Dis. 83(2): 124–129.10.1016/j.diagmicrobio.2015.07.00126234478 Search in Google Scholar

Obszanska K., I. Kern-Zdanowicz and I. Sitkiewicz. 2015b. Optimized Protocol for PFGE Analysis of Anginosus (milleri) Streptococci. Pol. J. Microbiol. 64: 61–64.10.33073/pjm-2015-008 Search in Google Scholar

Olson A.B., H. Kent, C.D. Sibley, M.E. Grinwis, P. Mabon, C. Ouellette, S. Tyson, M. Graham, S.D. Tyler, G. Van Domselaar and others. 2013. Phylogenetic relationship and virulence inference of Streptococcus anginosus group: curated annotation and wholegenome comparative analysis support distinct species designation. BMC Genomics 14: 895.10.1186/1471-2164-14-895389788324341328 Search in Google Scholar

Picard F.J., D. Ke, D.K. Boudreau, M. Boissinot, A. Huletsky, D. Richard, M. Ouellette, P.H. Roy and M.G. Bergeron. 2004. Use of tuf sequences for genus-specific PCR detection and phylogenetic analysis of 28 streptococcal species. J. Clin. Microbiol. 42: 3686–3695.10.1128/JCM.42.8.3686-3695.200449763215297518 Search in Google Scholar

Poyart C., G. Quesne, S. Coulon, P. Berche and P. Trieu-Cuot. 1998. Identification of streptococci to species level by sequencing the gene encoding the manganese-dependent superoxide dismutase. J. Clin. Microbiol. 36: 41–47.10.1128/JCM.36.1.41-47.19981248049431917 Search in Google Scholar

Reissmann S., C. Friedrichs, R. Rajkumari, A. Itzek, M. Fulde, A.C. Rodloff, K.N. Brahmadathan, G.S. Chhatwal and D.P. Nitsche--Schmitz. 2010. Contribution of Streptococcus anginosus to infections caused by groups C and G streptococci, southern India. Emerg. Infect. Dis. 16: 656–663. Search in Google Scholar

Siegman-Igra Y., Y. Azmon and D. Schwartz. 2012. Milleri group streptococcus-a stepchild in the viridans family. Eur. J. Clin. Microbiol. Infect. Dis. 31: 2453–2459.10.1007/s10096-012-1589-722391759 Search in Google Scholar

Sitkiewicz I. and W. Hryniewicz. 2010. Pyogenic streptococci-danger of re-emerging pathogens. Pol. J. Microbiol. 59: 219–226.10.33073/pjm-2010-034 Search in Google Scholar

Szczypa K., J. Wilemska, W. Hryniewicz and I. Sitkiewicz. 2012. Patogenicity mechanisms of Streptococcus pyogenes (in Polish). Post. Mikrobiol. 51: 3–15. Search in Google Scholar

Takahashi S., Y. Nagano, N. Nagano, O. Hayashi, F. Taguchi and Y. Okuwaki. 1995. Role of C5a-ase in group B streptococcal resistance to opsonophagocytic killing. Infect. Immun. 63: 4764–4769.10.1128/iai.63.12.4764-4769.19951736827591133 Search in Google Scholar

Takao A., H. Nagamune and N. Maeda. 2004. Identification of the anginosus group within the genus Streptococcus using polymerase chain reaction. FEMS Microbiol. Lett. 233: 83–89.10.1016/j.femsle.2004.01.04215043873 Search in Google Scholar

Thompson C.C., V.E. Emmel, E.L. Fonseca, M.A. Marin and A.C. Vicente. 2013. Streptococcal taxonomy based on genome sequence analyses. F1000Res. 2: 67.10.12688/f1000research.2-67.v1379954724358875 Search in Google Scholar

Trzcinski K., B.S. Cooper, W. Hryniewicz and C.G. Dowson. 2000. Expression of resistance to tetracyclines in strains of methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 45: 763–770.10.1093/jac/45.6.76310837427 Search in Google Scholar

Voyich J.M., K.R. Braughton, D.E. Sturdevant, C. Vuong, S.D. Kobayashi, S.F. Porcella, M. Otto, J.M. Musser and F.R. DeLeo. 2004. Engagement of the pathogen survival response used by group A Streptococcus to avert destruction by innate host defense. J. Immunol. 173: 1194–1201.10.4049/jimmunol.173.2.119415240710 Search in Google Scholar

Wanahita A., E.A. Goldsmith, D.M. Musher, J.E. Clarridge, 3rd, J. Rubio, B. Krishnan and J. Trial. 2002. Interaction between human polymorphonuclear leukocytes and Streptococcus milleri group bacteria. J. Infect. Dis. 185: 85–90.10.1086/33814511756985 Search in Google Scholar

Whiley R.A. and D. Beighton. 1991. Emended descriptions and recognition of Streptococcus constellatus, Streptococcus intermedius, and Streptococcus anginosus as distinct species. Int. J. Syst. Bacteriol. 41: 1–5. Search in Google Scholar

Whiley R.A., D. Beighton, T.G. Winstanley, H.Y. Fraser and J.M. Hardie. 1992. Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus (the Streptococcus milleri group): association with different body sites and clinical infections. J. Clin. Microbiol. 30: 243–244. Search in Google Scholar

Woods K., D. Beighton and J.L. Klein. 2014. Identification of the ‘Streptococcus anginosus group’ by matrix-assisted laser desorption ionization--time-of-flight mass spectrometry. J. Med. Microbiol. 63: 1143–1147.10.1099/jmm.0.076653-024917618 Search in Google Scholar

Zbinden A., N. Kohler and G.V. Bloemberg. 2011. recA-based PCR assay for accurate differentiation of Streptococcus pneumoniae from other viridans streptococci. J. Clin. Microbiol. 49: 523–527.10.1128/JCM.01450-10304349621147955 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo