1. bookVolume 65 (2016): Issue 1 (March 2016)
Journal Details
First Published
04 Mar 1952
Publication timeframe
4 times per year
access type Open Access

Effectiveness of Antipseudomonal Antibiotics and Mechanisms of Multidrug Resistance in Pseudomonas aeruginosa

Published Online: 15 Mar 2016
Volume & Issue: Volume 65 (2016) - Issue 1 (March 2016)
Page range: 23 - 32
Received: 05 Jan 2015
Accepted: 26 Aug 2015
Journal Details
First Published
04 Mar 1952
Publication timeframe
4 times per year

Pseudomonas aeruginosa is a leading human pathogen that causes serious infections at various tissues and organs leading to life threatening health problems and possible deadly outcomes. Resistance patterns vary widely whether it is from hospitals or community acquired infections. Reporting resistance profiles to a certain antibiotics provide valuable information in a given setting, but may be extrapolated outside the sampling location. In the present study, P. aeruginosa isolates were screened to determine their susceptibilities against anti-pseudomonal antimicrobial agents and possible existing mechanisms of resistance were determined. Eighty-six isolates of P. aeruginosa were recovered. Isolates representing different resistance profiles were screened for the existence of three different resistance mechanisms including drug inactivation due to metallo-β-lactamases, drug impermeability by outer membrane proteins and drug efflux. All tested isolates showed uniform susceptibility (100%, n = 86/86) to piperacillin, meropenem, amikacin, and polymyxin B. A single isolate was found to be imipenem resistant (99%, n = 85/86). The possible mechanisms of resistance of P. aeruginosa to imipenem involve active drug efflux pumps, outer membrane impermeability as well as drug inactivating enzymes. These findings demonstrate the fundamental importance of the in vitro susceptibility testing of antibiotics prior to antipseudomonal therapy and highlight the need for a continuous antimicrobial resistance surveillance programs to monitor the changing resistance patterns so that clinicians and health care officials are updated as to the most effective therapeutic agents to combat the serious outcomes of P. aeruginosa infections.


Abdel R.A.T., S. Hafez, S. Abdelhakam, Z. Ali-Eldin, I. Esmat, M. Elsayed and A. Aboul-Fotouh. 2010. Antimicrobial resistant bacteria among health care workers in intensive care units at Ain Shams University Hospitals. J. Egypt. Soc. Parasitol. 40(1): 71. Search in Google Scholar

Al-Tawfiq J.A. 2007. Occurrence and antimicrobial resistance pattern of inpatient and outpatient isolates of Pseudomonas aeruginosa in a Saudi Arabian hospital: 1998–2003. Int. J. Infect. Dis. 11(2): 109–114. Search in Google Scholar

Andrews J.M. 2001. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 48(suppl. 1): 5–16.10.1093/jac/48.suppl_1.511420333 Search in Google Scholar

Ashour H.M. and A. El-Sharif. 2009. Species distribution and antimicrobial susceptibility of gram-negative aerobic bacteria in hospitalized cancer patients. J. Transl. Med. 7: 14.10.1186/1479-5876-7-14265485419228413 Search in Google Scholar

Ayala J., A. Quesada, S. Vadillo, J. Criado and S. Píriz. 2005. Penicillin-binding proteins of Bacteroides fragilis and their role in the resistance to imipenem of clinical isolates. J. Med. Microbiol. 54(11): 1055–1064. Search in Google Scholar

Barbosa T.M. and S.B. Levy. 2000. The impact of antibiotic use on resistance development and persistence. Drug Resist. Updat. 3(5): 303–311. Search in Google Scholar

Benčić I. and D. Baudoin. 2001. Imipenem consumption and Gramnegative pathogen resistance to imipenem at Sestre Milosrdnice University Hospital. Acta Clin. Croat. 40: 185–189. Search in Google Scholar

Brown P.D. and A. Izundu. 2004. Antibiotic resistance in clinical isolates of Pseudomonas aeruginosa in Jamaica. Rev. Panam. Salud. Publica 16(2): 125–130. Search in Google Scholar

Casal M., M. Causse, F. Rodriguez-Lopez and M. Casal. 2012. Antimicrobial resistance in clinical patterns of Pseudomonas aeruginosa (in Spanish). Rev. Esp. Quimioter. 25(1): 37–41. Search in Google Scholar

Clinical Laboratory Standards Institute (CLSI). 2015. Performance Standards for Antimicrobial Susceptibility Testing; TwentyFifth Informational Supplement (M100-S25). Clinical Laboratory Standards Institute. Wayne, Pennsylvania, USA. Search in Google Scholar

Danel F., L.M. Hall, B. Duke, D. Gur and D.M. Livermore. 1999. OXA-17, a further extended-spectrum variant of OXA-10 β-lactamase, isolated from Pseudomonas aeruginosa. Antimicrob. Agents. Chemother. 43(6): 1362–1366. Search in Google Scholar

Decousser J.W., P. Pina, F. Picot, C. Delalande, B. Pangon, P. Courvalin and P. Allouch. 2003. Frequency of isolation and antimicrobial susceptibility of bacterial pathogens isolated from patients with bloodstream infections: a French prospective national survey. J. Antimicrob. Chemother. 51(5): 1213–1222.10.1093/jac/dkg20112697655 Search in Google Scholar

Driscoll J.A., S.L. Brody and M.H. Kollef. 2007. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 67(3): 351–368.10.2165/00003495-200767030-0000317335295 Search in Google Scholar

Drissi M., Z.B. Ahmed, B. Dehecq, R. Bakour, P. Plesiat and D. Hocquet. 2008. Antibiotic susceptibility and mechanisms of betalactam resistance among clinical strains of Pseudomonas aeruginosa: first report in Algeria. Med. Mal. Infect. 38(4): 187–191. Search in Google Scholar

Dubois V., C. Arpin, M. Melon, B. Melon, C. Andre, C. Frigo and C. Quentin. 2001. Nosocomial outbreak due to a multiresistant strain of Pseudomonas aeruginosa P12: efficacy of cefepime-amikacin therapy and analysis of β-lactam resistance. J. Clin. Microbiol. 39(6): 2072–2078.10.1128/JCM.39.6.2072-2078.20018809111376037 Search in Google Scholar

El-Behedy E.M., H. Mohtady, N. Mohamed, F. Amer, H. El Zanfaly, D. Soud, S. Khalil, Y. El Hendy, T. El Behedy and E. El Gendy. 2002. Incidence of resistance to imipenem among hospital strains of Pseudomonas aeruginosa and surveillance for blaIMP gene. Egypt. J. Med. Microbiol. 13(3): 565–572. Search in Google Scholar

El-Kholy A., H. Baseem, G.S. Hall, G.W. Procop and D.L. Longworth. 2003. Antimicrobial resistance in Cairo, Egypt 1999– 2000: a survey of five hospitals. J. Antimicrob. Chemother. 51(3): 625–630.10.1093/jac/dkg10112615864 Search in Google Scholar

El-Kholy A., T. Saied, M. Gaber, M. A. Younan, M. Haleim, H. El-Sayed, H. El-Karaksy, H. Bazara’a and M. Talaat. 2012. Device-associated nosocomial infection rates in intensive care units at Cairo University hospitals: First step toward initiating surveillance programs in a resource-limited country. Am. J. Infect. Control. 40(6): e216–20.10.1016/j.ajic.2011.12.01022418610 Search in Google Scholar

El Zowalaty M.E. 2012. Alarming Trend of Antibiotic Resistance in Pseudomonas aeruginosa Isolates. Journal of Pure and Applied Microbiology 6(1): 175–183. Search in Google Scholar

El Zowalaty M.E., A. Al Thani, T.J. Webster, A.E. El Zowalaty, H.P. Schweizer, G.K. Nasrallah, H.E. Marei and H.M. Ashour. 2015. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiology 10(10) 1683–1706.10.2217/fmb.15.4826439366 Search in Google Scholar

Essack S., C. Connolly and A. Sturm. 2008. Antibiotic use and resistance in public-sector hospitals in KwaZulu-Natal. S. Afr. Med. J. 95(11): 865–70. Search in Google Scholar

Farra A., S. Islam, A. Strålfors, M. Sörberg and B. Wretlind. 2008. Role of outer membrane protein OprD and penicillin-binding proteins in resistance of Pseudomonas aeruginosa to imipenem and meropenem. Int. J. Antimicrob. Agents. 31(5): 427–433.10.1016/j.ijantimicag.2007.12.01618375104 Search in Google Scholar

Gerçeker A. A. and B. Gürler. 1995. Invitro activities of various antibiotics, alone and in combination with amikacin against Pseudomonas aeruginosa. J. Antimicrob. Chemother. 36(4): 707–711. Search in Google Scholar

Girlich D., T. Naas and P. Nordmann. 2004. Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 48(6): 2043–2048.10.1128/AAC.48.6.2043-2048.200441558015155197 Search in Google Scholar

Hamilton-Miller J. 2004. Antibiotic resistance from two perspectives: man and microbe. Int. J. Antimicrob. Agents. 23(3): 209–212.10.1016/j.ijantimicag.2003.12.001 Search in Google Scholar

Hassan A.M., O. Ibrahim and M. El Guinaidy. 2010. Surveillance of antibiotic use and resistance in Orthopaedic Department in an Egyptian University Hospital. Int. J. Infect. Control. 7(1); doi: 10.3396/ijic.V7i1. Search in Google Scholar

Hong D.J., I.K. Bae, I.-H. Jang, S.H. Jeong, H.-K. Kang and K. Lee. 2015. Epidemiology and Characteristics of Metallo-β-Lactamase-Producing Pseudomonas aeruginosa. Infect. Chemother. 47(2): 81–97. Search in Google Scholar

Huang S.S., B.J. Labus, M.C. Samuel, D.T. Wan and A.L. Reingold. 2002. Antibiotic resistance patterns of bacterial isolates from blood in San Francisco County, California, 1996–1999. Emerg. Infect. Dis. 8(2): 195–201. Search in Google Scholar

Jesudason M.V., A. Kandathil and V. Balaji. 2005. Comparison of two methods to detect carbapenemase and metallo-beta-lactamase production in clinical isolates. Indian J. Med. Res. 121(6): 780–783. Search in Google Scholar

Jones R.N., H.S. Sader and M.L. Beach. 2003. Contemporary in vitro spectrum of activity summary for antimicrobial agents tested against 18 569 strains non-fermentative Gram-negative bacilli isolated in the SENTRY Antimicrobial Surveillance Program (1997– 2001). Int. J. Antimicrob. Agents. 22(6): 551–556. Search in Google Scholar

Kouda S., M. Ohara, M. Onodera, Y. Fujiue, M. Sasaki, T. Kohara, S. Kashiyama, S. Hayashida, T. Harino and T. Tsuji. 2009. Increased prevalence and clonal dissemination of multidrug-resistant Pseudomonas aeruginosa with the blaIMP-1 gene cassette in Hiroshima. J. Antimicrob. Chemother. 64(1): 46–51. Search in Google Scholar

Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259): 680–685.10.1038/227680a0 Search in Google Scholar

Landman D., S. Bratu, M. Alam and J. Quale. 2005. Citywide emergence of Pseudomonas aeruginosa strains with reduced susceptibility to polymyxin B. J. Antimicrob. Chemother. 55(6): 954–957. Search in Google Scholar

Landman D., C. Georgescu, D.A. Martin and J. Quale. 2008. Polymyxins revisited. Clin. Microbiol. Rev. 21(3): 449–465. Search in Google Scholar

Liu Q., X. Li, W. Li, X. Du, J.-Q. He, C. Tao and Y. Feng. 2015. Influence of carbapenem resistance on mortality of patients with Pseudo monas aeruginosa infection: a meta-analysis. Sci. Rep. 5: 11715.10.1038/srep11715 Search in Google Scholar

Livermore D.M. 2002. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis. 34(5): 634. Search in Google Scholar

Mavroidi A., E. Tzelepi, A. Tsakris, V. Miriagou, D. Sofianou and L. Tzouvelekis. 2001. An integron-associated β-lactamase (IBC-2) from Pseudomonas aeruginosa is a variant of the extended-spectrum β-lactamase IBC-1. J. Antimicrob. Chemother. 48(5): 627–630.10.1093/jac/48.5.627 Search in Google Scholar

Nishino K. and A. Yamaguchi. 2004. Role of histone-like protein H-NS in multidrug resistance of Escherichia coli. J. Bacteriol. 186(5): 1423–1429. Search in Google Scholar

Nordmann P. 2010. Gram-negative bacteriae with resistance to carbapenems (in French). Med. Sci. (Paris) 26(11): 950–959. Search in Google Scholar

Osman K., M. Alabady, N. Ata, N. Ezzeldin and M. Aly. 2010. Genotypic Characterization of Pseudomonas aeruginosa Isolated from Human and Animal Sources in Egypt. Zoonoses and Public Health. 57(5): 329–338. Search in Google Scholar

Poirel L., T. Naas, D. Nicolas, L. Collet, S. Bellais, J.D. Cavallo and P. Nordmann. 2000. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob. Agents Chemother. 44(4): 891–897.10.1128/AAC.44.4.891-897.2000 Search in Google Scholar

Poirel L., D. Girlich, T. Naas and P. Nordmann. 2001. OXA-28, an extended-spectrum variant of OXA-10 β-lactamase from Pseudomonas aeruginosa and its plasmid-and integron-located gene. Anti-microb. Agents Chemother. 45(2): 447–453.10.1128/AAC.45.2.447-453.2001 Search in Google Scholar

Quale J., S. Bratu, J. Gupta and D. Landman. 2006. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother. 50(5): 1633–1641.10.1128/AAC.50.5.1633-1641.2006 Search in Google Scholar

Queenan A.M. and K. Bush. 2007. Carbapenemases: the versatile β-lactamases. Clin. Microbiol. Rev. 20(3): 440–458. Search in Google Scholar

Rodriguez-Martinez J.M., L. Poirel and P. Nordmann. 2009. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 53(11): 4783–4788.10.1128/AAC.00574-09 Search in Google Scholar

Shehabi A.A., A.A. Haider and M.K. Fayyad. 2011. Frequency of antimicrobial resistance markers among Pseudomonas aeruginosa and Escherichia coli isolates from municipal sewage effluent water and patients in Jordan. The International Arabic Journal of Antimicrobial Agents. 1(1); doi: 10: 3823/700. Search in Google Scholar

Song J.H. 2008. What’s new on the antimicrobial horizon? Int. J. Antimicrob. Agents. 32(suppl. 4): S207–213.10.1016/S0924-8579(09)70004-4 Search in Google Scholar

Strateva T., V. Ouzounova-Raykova, B. Markova, A. Todorova, Y. Marteva-Proevska and I. Mitov. 2007. Problematic clinical isolates of Pseudomonas aeruginosa from the university hospitals in Sofia, Bulgaria: current status of antimicrobial resistance and prevailing resistance mechanisms. J. Med. Microbiol. 56(7): 956–963.10.1099/jmm.0.46986-0 Search in Google Scholar

Strateva T. and D. Yordanov. 2009. Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J. Med. Microbiol. 58(9): 1133–1148. Search in Google Scholar

Suárez C., C. Peņa, L. Gavaldā, F. Tubau, A. Manzur, M. Dominguez, M. Pujol, F. Gudiol and J. Ariza. 2010. Influence of carbapenem resistance on mortality and the dynamics of mortality in Pseudomonas aeruginosa bloodstream infection. Int. J. Infect. Dis. 14: e73–e78.10.1016/j.ijid.2009.11.019 Search in Google Scholar

Tawfik A.F., A.M. Shibl, M.A. Aljohi, M.A. Altammami and M.H. Al-Agamy. 2012. Distribution of Ambler class A, B and D β-lactamases among Pseudomonas aeruginosa isolates. Burns 38(6): 855–60.10.1016/j.burns.2012.01.005 Search in Google Scholar

Van Delden C. and B. H. Iglewski. 1998. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg. Infect. Dis. 4(4): 551. Search in Google Scholar

Walsh T.R. 2010. Emerging carbapenemases: a global perspective. Int. J. Antimicrob. Agents. 36(suppl. 3): S8–14.10.1016/S0924-8579(10)70004-2 Search in Google Scholar

Wolter D.J., N. Khalaf, I.E. Robledo, G.J. Vázquez, M.I. Santé, E.E. Aquino, R.V. Goering and N.D. Hanson. 2009. Surveillance of carbapenem-resistant Pseudomonas aeruginosa isolates from Puerto Rican Medical Center Hospitals: dissemination of KPC and IMP-18 β-lactamases. J. Antimicrob. Chemother. 53(4): 1660–1664.10.1128/AAC.01172-08266307619188398 Search in Google Scholar

Woodford N., J. Zhang, M.E. Kaufmann, S. Yarde, M. del Mar Tomas, C. Faris, M.S. Vardhan, S. Dawson, S.L. Cotterill and D.M. Livermore. 2008. Detection of Pseudomonas aeruginosa isolates producing VEB-type extended-spectrum β-lactamases in the United Kingdom. J. Antimicrob. Chemother. 62(6): 1265–1268. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo