Cite

Abdel-Megeed A., N. Al-Harbi and S. Al-Deyab. 2010. Hexadecane degradation by bacterial strains isolated from contaminated soils. African J. Biotechnol. 9: 7487–7494.10.5897/AJB10.638 Search in Google Scholar

American Public Health Association (APHA). 1999. American Water Works Association, Water Pollution Control Federation. Standard methods for the examination of water and wastewater. 20th ed. ASM Press, Washington, D. C. Search in Google Scholar

Basha K.M., A. Rajendran and V. Thangavelu. 2010. Recent advances in the biodegradation of phenol: A review. Asian J. Exp. Biol. Sci. 1(2): 219–234. Search in Google Scholar

Cameotra S.S. and P. Singh. 2009. Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species. Microb. Cell Fact. 8: 16.10.1186/1475-2859-8-16 Search in Google Scholar

Dawson C., E. Godsiffe, I. Thompson, T. Ralebitso-Senior, K. Killham and G. Paton. 2007. Application of biological indicators to assess recovery of hydrocarbon impacted soils. Soil Biol. Biochem. 39: 164–177.10.1016/j.soilbio.2006.06.020 Search in Google Scholar

de Carvalho C.C. and M.M. da Fonseca. 2005. The remarkable Rhodococcus erythropolis. Appl. Microbiol. Biotechnol. 67: 715–726.10.1007/s00253-005-1932-3 Search in Google Scholar

Finnerty W.R. 1992. The biology and genetics of the genus Rhodo- coccus. Ann. Rev. Microbiol. 46: 193–218.10.1146/annurev.mi.46.100192.001205 Search in Google Scholar

Kundu D., C. Hazra, N. Dandi and A. Chaudhari. 2013. Biodegradation of 4-nitrotoluene with biosurfactant production by Rhodococ- cus pyridinivorans NT2: metabolic pathway, cell surface properties and toxicological characterization. Biodegradation 24(6): 775–793.10.1007/s10532-013-9627-4 Search in Google Scholar

Kumar A., S. Kumar and S. Kumar. 2005. Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC1194. Biochem. Eng. J. 22: 151–159.10.1016/j.bej.2004.09.006 Search in Google Scholar

Kumar P.G.N. and K.B. Sumangala. 2012. Fungal degradation of Azo dye-Red 3BN and optimization of physico-chemical parameters. ISCA J. Biol. Sci. 1: 17–24. Search in Google Scholar

Li C., Y. Li, X. Cheng, L. Feng, C. Xi and Y. Zhang. 2013. Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile-degrading bacterium) with biofilm-forming bacteria for wastewater treatment. Biores. Technol. 131: 390–396.10.1016/j.biortech.2012.12.140 Search in Google Scholar

Lozinsky V.I., I.Y. Galaev, F.M. Plieva, I.N. Savina, H. Jungvid and B. Mattiasson 2003. Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol. 21: 445–451.10.1016/j.tibtech.2003.08.002 Search in Google Scholar

Meggyes T. and F.G. Simon. 2000. Removal of organic and inorganic pollutants from groundwater using Permeable Reactive Barriers. Part 2. Engineering of permeable reactive barriers. Land Con- tam. Reclam. 8: 175–187. Search in Google Scholar

Nair I.C., K. Jayachandran and S. Shashidha. 2008. Biodegradation of Phenol. African J. Biotechnol. 7: 4951–4958. Search in Google Scholar

Pai S.L., Y.L. Hsu, N.M. Chong, C.S. Sheu and C.H. Chen. 1995. Continuous degradation of phenol by Rhodococcus sp. immobilized on granular activated carbon and in calcium alginate. Biores. Tech- nol. 51: 37–42.10.1016/0960-8524(94)00078-F Search in Google Scholar

Pan Y.T., R.R. Drake and A.D. Elbein. 1996. Trehalose-P synthase of mycobacteria: its substrate specificity is affected by polyanions. Glycobiology 6: 453–461.10.1093/glycob/6.4.4538842710 Search in Google Scholar

Prieto M., A. Hidalgo, C. Rodrigues-Fernandez, J. Serra and M. Llama. 2002. Biodegradation of phenol in synthetic and industrial waste by Rhodococcus erythropolis UPV-1 immobilized in an air stirred reactor with clarifier. Appl. Microbiol. Biotechnol. 58: 853–859.10.1007/s00253-002-0963-212021809 Search in Google Scholar

Rosenberg M., D. Gutnick and E. Rosenberg. 1980. Adherence of bacteria to hydrocarbons: A simple method for measuring cellsurface hydrophobicity. FEMS Microbiol. Lett. 9: 29–33.10.1111/j.1574-6968.1980.tb05599.x Search in Google Scholar

Quek E., Y.-P. Ting and H.M. Tan. 2006. Rhodococcus sp. F92 immobilized on polyurethane foam shows ability to degrade various petroleum products. Biores. Technol. 97: 32–38.10.1016/j.biortech.2005.02.03116154500 Search in Google Scholar

Shetty K., I. Kalifathulla and G. Srinikethan. 2007. Performance of pulsed plate bioreactor for biodegradation of phenol. J. Hazard. Mater. 140: 346–352.10.1016/j.jhazmat.2006.09.05817092642 Search in Google Scholar

Sikkema J., J.A. de Bont and B. Poolman. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59: 201–222.10.1128/mr.59.2.201-222.19952393607603409 Search in Google Scholar

Soudi M.R. and N. Kolahchi. 2011. Bioremediation potential of a phenol degrading bacterium, Rhodococcus erythropolis SKO-1. Progress Biol. Sci. 1: 31–40. Search in Google Scholar

Sun J.-Q., L. Xu, Y.-Q. Tang, F.-M. Chen and X.-L. Wu. 2012. Simultaneous degradation of fenol and n-hexadecane by Acineto- bacter strains. Biores. Technol. 123: 664–668.10.1016/j.biortech.2012.06.07222939600 Search in Google Scholar

Tambekar D.H., P.S. Bhorse and P.V. Gadakh. 2012. Biodegradation of phenol by native microorganisms isolated from Lonar Lake in Maharashtra State (India). Int. J. Life Sci. Pharma Res. 2(4): 26–30. Search in Google Scholar

Tuleva B., N. Christova, R. Cohen, G. Stoev and I. Stoineva. 2008. Production and structural elucidation of trehalose tetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislavien- sis strain. J. Appl. Microbiol. 104: 1703–1710.10.1111/j.1365-2672.2007.03680.x18194255 Search in Google Scholar

Ullrich R. and M. Hofrichter. 2007. Enzymatic hydroxylation of aromatic compounds. Cell M ol. Life Sci. 64: 271–293.10.1007/s00018-007-6362-117221166 Search in Google Scholar

van Beilen J.B. and E.G. Funhoff. 2007. Alkane hydroxylases involved in microbial alkane degradation. Appl. Microbiol. Biotech- nol. 74: 13–21.10.1007/s00253-006-0748-017216462 Search in Google Scholar

van der Geize R. and L. Dijkhuizen. 2004. Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr. Opin. Microbiol. 7: 255–261.10.1016/j.mib.2004.04.00115196492 Search in Google Scholar

Velickova E., P. Petrov, C.H. Tsvetanov, S. Kuzmanova, M. Cvetkov- ska and E. Winkelhausen. 2010. Entrapment of Saccharomyces cere- visiae cells in UV crosslinked hydroxyethylcellulose/poly(ethylene oxide) double-layered gels. React. Funct. Polym. 70: 908–915.10.1016/j.reactfunctpolym.2010.09.004 Search in Google Scholar

Yordanova G., D. Ivanova, T. Godjevrova and A. Krastanov. 2009. Biodegradation of phenol by immobilized Aspergillus awamori NRRL 3112 on modified polyacrylonitrile membrane. Biodegradation 20: 717–726.10.1007/s10532-009-9259-x19340590 Search in Google Scholar

Zhao Z., A. Selvam and J.W.-C. Wong. 2011. Effects of rhamnolipids on cell surface hydrophobicity of PAH degrading bacteria and the biodegradation of phenanthrene. Biores. Technol. 102: 3999–4007.10.1016/j.biortech.2010.11.08821208798 Search in Google Scholar

eISSN:
2544-4646
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Microbiology and Virology