Open Access

Bactericidal Activity of Octenidine to Various Genospecies of Borrelia burgdorferi, Sensu Lato Spirochetes in Vitro and in Vivo


Cite

Chmielewski T. and S. Tylewska-Wierzbanowska. 2010. Interactions between Borrelia burgdorferi and mouse fibroblasts. Pol. J. Microbiol. 59: 157–160.10.33073/pjm-2010-024 Search in Google Scholar

Coburn J., G. Leong and G. Chaconas. 2013. Iluminating the role of the Borrelia burgdorferi adhesions. Trends Microbiol. 21: 372–379.10.1016/j.tim.2013.06.005 Search in Google Scholar

Embers M.E., S.W. Barthold, J.T. Borda, L. Bowers, L. Doyle, E. Hodzic, M.B. Jacobs, N.R. Hasenkampf, D.S. Martin, S. Narasimhan and others. 2012. Persistence of Borrelia burgdorferi in rhesus macaques following antibiotic treatment of disseminated infection. PLoS One 7(1): e29914.10.1371/journal.pone.0029914 Search in Google Scholar

European Standard EN 1276: Chemical disinfectants and antiseptics – Quantitative suspension test for the evaluation of bactericidal activity of chemical disinfectants and antiseptics used in food, industrial, domestic and institutional areas – Test method and requirements. European Committee for Standardization, Brussels 2009. Search in Google Scholar

Groshong A.M. and J.S. Blevins. 2014. Insights into biology of Borrelia burgdorferi gained through the application of molecular genetics. Adv. Appl. Microbiol. 86: 41–143.10.1016/B978-0-12-800262-9.00002-0 Search in Google Scholar

Harman M.W., S.M. Dunham-Ems, M.J. Caimano, A.A. Belperron, L.K. Bockenstedt, H.C. Fu, J.D. Radolf and C.W. Wolgemuth. 2012. Heterogeneous motility of the Lyme disease spirochete in gelatin mimics dissemination throught tissue. Proc. Natl. Acad. Sci. USA 109: 3059–306410.1073/pnas.1114362109 Search in Google Scholar

Harrison M.A. and I.F. Rae. 1997. General techniques of cell cultures, pp. 50, 72–73. Cambridge University Press.10.1017/CBO9780511623226 Search in Google Scholar

Hodzic E., S. Feng, K. Holden, K.J. Freet and S.W. Barthold. 2008. Persistence of Borrelia burgdorferi following antibiotic treatment in mice. Antimicrob. Agents Chemother. 52: 1728–1736.10.1128/AAC.01050-07 Search in Google Scholar

Motaleb A., J. Liu and R.M. Wooten. 2015. Spirocheta motility and chemotaxis in the natural enzotic cycle and development of Lyme disease. Curr. Op. Microbiol. 28: 106–113.10.1016/j.mib.2015.09.006 Search in Google Scholar

Stanek G., G.P. Wormser, J. Gray and F. Strle. 2012. Lyme borreliosis. Lancet 4:461–473.10.1016/S0140-6736(11)60103-7 Search in Google Scholar

Strabinger R.K., B.A. Summers, Y.F. Chang and M.J.G. Appel. 1997. Persistence of Borrelia burgdorferi in experimentally infected dogs after antibiotic treatment. J. Clin. Microbiol. 15: 111–116.10.1128/jcm.35.1.111-116.19972295218968890 Search in Google Scholar

Theophilus P.A.S., M.J. Victoria, K.M. Socarras, K.R. Filush, K. Gupta, D.F. Luecke and E. Sapi. 2015. Effectiveness of Stevia rebaudiana whole leaf extract against the various morphological forms of Borrelia burgdorferi in vitro. Eur. J. Microbiol. Immunol. 4: 268–280.10.1556/1886.2015.00031 Search in Google Scholar

Tylewska-Wierzbanowska S. and T. Chmielewski. 1997. The isolation of Borrelia burgdorferi spirochetes from clinical material in cell line cultures. Zentralbl. Bakteriol. 286: 363–370.10.1016/S0934-8840(97)80094-1 Search in Google Scholar

Wolgemuth C.W. Flagellar motility of the pathogenic spirochetes. 2015. Semin. Cell Dev. Biol. 46: 104–112.10.1016/j.semcdb.2015.10.015499446926481969Search in Google Scholar

eISSN:
2544-4646
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Microbiology and Virology