[Årthun M., Edelvik T., Drange H., Fuervik T., Johnson H.L., Keenlyside N.S., 2017, Skillful prediction of northern climate provided by the ocean, Nature Communications, 8, 15875, DOI: 10.1038/ncomms15875.]Search in Google Scholar
[Bjerknes J., 1964, Atlantic air-sea interaction, Advances in Geophysics, 10, 1–82, DOI: 10.1016/S0065-2687(08)60005-9.]Search in Google Scholar
[Cassou C., Terray R., Phillips A.S., 2005, Tropical Atlantic Influence on European Heat Waves, Journal of Climate, 18 (15), 2805–2811, DOI: 10.1175/JCLI3506.1.]Search in Google Scholar
[Dimitriev A.A., Dubravin V.F., Belyazo V.A., 2018, Atmosfernye processy severnogo polushariya (1891–2018 gg) ikh klassifikaciya i ispolzovanie, “SUPER Izdatelstvo”, Sankt-Peterburg.]Search in Google Scholar
[Etheridge D.M., Steele L.P., Langenfelds R.L., Francey R.J., Barnola J.-M., Morgan V.I., 1996, Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn, Journal of Geophysical Research, 101, 4115–4128.]Search in Google Scholar
[Etheridge D.M., Steele L.P., Langenfelds R.L., Francey R.J., Barnola J.-M., Morgan V.I., 1998, Historical CO2 records from the Law Dome DE08, DE08-2, and DSS ice cores, [in:] Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.]Search in Google Scholar
[Eldevik T., Nilsen J.E.Ø., 2013, The Arctic-Atlantic Thermohaline Circulation, Journal of Climate, 26(21), 8698–8705, DOI: 10.1175/JCLI-D-13-00305.1. ]Search in Google Scholar
[Feldstein S.B., Frantzke C.L.E., 2017, Atmospheric Teleconnection Patterns, [in:] C. Frantzke, T. O’Kane (Eds.), Nonlinear and Stochastic Climate Dynamics, Cambridge University Press, 54–104.]Search in Google Scholar
[Feudale L., Shukla J., 2010, Influence of sea surface temperature on the European heat wave of 2003 summer. Part I: an observational study, Climate Dynamics, 36, 1691–1703, DOI: 10.1007/s00382-010-0788-0. ]Search in Google Scholar
[Folland C.K., Knight J., Linderholm H.W., Fereday D., Ineson S., Hurrell J.W., 2009, The Summer North Atlantic Oscillation: past, present and future, Journal of Climate, 22(5), 1082–1103, DOI: 10.1175/2008JCLI2459.1. ]Search in Google Scholar
[Girs A.A., 1964, O sozdanii edinoi klassifikacii makrosinopticheskikh processov severnogo polushariya, Meteorologya i Gidrologiya, 4, 43–47.]Search in Google Scholar
[Huang B, Thorne P.W, Banzon V.F., Boyer T., Chepurin G., Lawrimore J.H., Menne M.J., Smith T.M., Vose R.S., Zhang H-M., 2017, Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validation and intercomparisons, Journal of Climate, 30(20), 8179–8205, DOI: 10.1175/JCLI-D-16-0836.1.]Search in Google Scholar
[Hurrell JW., Folland C.K., 2002, A change in the summer circulation over the North Atlantic, CLIVAR Exchanges, 25, International CLIVAR Project Office, Southampton, United Kingdom, 52–54.]Search in Google Scholar
[Hurrell J.W., Kushnir Y., Ottersen G., Visbeck M., 2003, An Overview of the NAO, [in:] J.W. Hurrell, Y. Kushnir, G. Ottersen, M. Visbeck (Eds.), The North Atlantic Oscillation: Climatic Significance and Environmental Impact. AGU Geophysical Monograph, 134, 1–35. ]Search in Google Scholar
[IPCC, 2001, Chapter 6. Radiative Forcing of Climate Change, [in:] TAR Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge, 350–414.]Search in Google Scholar
[IPCC, 2007, Technical Summary, [in:] S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (Eds.), Climate Change 2007: The Physical Science Basic. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge and New York (ar4-wg1-ts-1.pdf). ]Search in Google Scholar
[IPCC, 2013, Summary for Policymakers, [in:] T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Naules, Y. Xia, V. Bex, P.M. Midgley (Eds.), Climate Change 2013. The Physical Science Basis. Contribution of Working Group I to Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK; New York, USA.]Search in Google Scholar
[Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Leetmaa A., Chelliah M., Reynolds R., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Jenne R., Joseph D., 1996, The NCEP/NCAR 40-year reanalysis project, BAMS (Bulletin of the American Meteorological Society), 77(3), 437–470.]Search in Google Scholar
[Linderholm H.W., Seim A., Ou T., Jeong J.-H., Liu Y., Wang X., Bao G., Folland C., 2013, Exploring teleconnections between the summer NAO (SNAO) and climate in East Asia over the last four centuries – A tree-ring perspective, Dendrochronologia, 31(4), 297–310, DOI: 10.1016/j.dendro.2012.08.004.]Search in Google Scholar
[Marsz A.A., 2001, Stan termiczny północnego Atlantyku a reżim termiczny zim na polskim wybrzeżu Bałtyku, Wydawnictwo Uczelniane WSM w Gdyni, Gdynia.]Search in Google Scholar
[Marsz A.A., 2015, Model zmian powierzchni lodów morskich Arktyki (1979–2013) – zmienne sterujące w modelu minimalistycznym i ich wymowa klimatyczna, Problemy Klimatologii Polarnej, 25, 249–334.]Search in Google Scholar
[Marsz A.A., Styszyńska A., 2022, Proces ocieplenia w Polsce – przebieg i przyczyny (1951–2018). Przejaw wewnętrznej dynamiki systemu klimatycznego czy proces antropogeniczny?, Prace i Studia Geograficzne, 67(2), 51–82, DOI: 10.48128/pisg/2022-67.2-04.]Search in Google Scholar
[Marsz A.A., Styszyńska A., 2023a, Niestacjonarność przebiegu temperatury nad obszarem Europy – zmiana reżimu temperatury powietrza w Europie w latach 1987–1989 i jej przyczyny, Prace Geograficzne, 170, 9–46, DOI: 10.4467/20833113PG.23.001.17489.]Search in Google Scholar
[Marsz A.A., Styszyńska A., 2023b, Zmiany ciśnienia atmosferycznego nad Morzem Barentsa i ich wpływ na cyrkulację atmosferyczną w atlantycko-europejskim sektorze cyrkulacyjnym, Przegląd Geofizyczny, 68(3– –4), 83–111, DOI: 10.32045/PG-2023-038.]Search in Google Scholar
[Marsz A.A., Styszyńska A., 2024, Atlantyk Północny a klimat Europy. Mechanizmy wpływu. Część 1, Prace i Studia Geograficzne, 69(3), 25–43, DOI: 10.48128/pisg-2024-69.3-02.]Search in Google Scholar
[Muilwijk M., Smedsrud L.H., Ilicak M., Drange H., 2018, Atlantic Water Heat Transport Variability in the 20th Century Arctic Ocean From a Global Ocean Model and Observations, Journal of Geophysical Research: Oceans, 123(11), 8159–8179, DOI: 10.1029/2018JC014327.]Search in Google Scholar
[Nigam S., 2003, Teleconnections, [in:] Encyclopedia of Atmospheric Sciences, Academic Press, 2243–2269, DOI: 10.1016/BO-12-227090-8/00400-0. ]Search in Google Scholar
[Nigam S., Baxter S., 2015, General Circulation of the Atmosphere. Teleconnections, [in:] G.R. North, F. Zhang, J. Pyle (Eds.), Encyclopedia of Atmospheric Sciences, Second Edition, Academic Press, 90–109, DOI: 10.1016/B978-0-12-382225-3.00400-X. ]Search in Google Scholar
[Ossó A., Sutton R., Shaffrey L., Dong B., 2020, Development, amplification, and decay of Atlantic/European Summer weather patterns linked to Spring North Atlantic sea surface temperatures, Journal of Climate, 33(14), 5939–5951, DOI: 10.1175/JCLI-D-19-0613.1. ]Search in Google Scholar
[Sadowski M., 1990, Relationship between elements of climate in Poland and sea surface temperature in the North Atlantic Ocean, [in:] R. Brazdil (Ed.), Climatic change in the historical and the instrumental periods. Masaryk University, Brno, 231–236.]Search in Google Scholar
[Semenov V., 2008, Influence of oceanic inflow to the Barents Sea on climate variability in the Arctic region, Doklady Earth Sciences, 418(1), 91–94.]Search in Google Scholar
[Skagseth Ø., Furevik T., Ingvaldsen R., Loeng H., Mork K.A., Orvik K.A., Ozhigin V., 2008, Volume and heat transports to the Arctic Ocean via the Norwegian and Barents seas, [in:] R.R. Dickson, J. Meincke, P. Rhines (Eds.), Arctic-Subarctic Ocean Fluxes, Springer, Dordrecht, 45–64. ]Search in Google Scholar
[Smedsrud L.H., Esau I., Invaldsen R.B., Eldevik T., Haugan P.M., Li C., Lien V.S., Olsen A., Omar A.M., Ottera O.H., Risebrobakkrn B., Sandø A.B., Semenov V.A., Sorokina S.A., 2013, The role of the Barents Sea in the Arctic Climate System, Reviews of Geophysics, 51(3), 415–449, DOI: 10.1002/rog.20017.]Search in Google Scholar
[Smedsrud L.H., Muilwijk M., Brakstadt A., Madonna E., Lauvset S.K., Spensberger C., Born A., Eldevik T., Drange H., Jeansson E., Li C., Olsen A., Skagseth Ø., Slater D.A., Straneo F., Vage K., Årthun M., 2022, Nordic Seas Heat Loss, Atlantic Inflow, and Arctic Sea Ice Cover Over the Last Century, Reviews of Geophysics, 60(1), e2020RG000725, DOI: 10.1029/2020RG000725.]Search in Google Scholar
[Sutton R.T., Dong B., 2012, Atlantic Ocean influence on a shift in European climate in the 1990s, Nature Geoscience, 5, 788–792, DOI: 10.1038/ngeo1595.]Search in Google Scholar
[Thoning K.W., Tans P.P., Komhyr W.D., 1989, Atmospheric carbon dioxide at Mauna Loa Observatory 2. Analysis of the NOAA GMCC data, 1974–1985, Journal of Geophysical Research, 94, 8549–8565.]Search in Google Scholar
[Wangengejm G.Ya., 1952, Osnovy makrocirkuylacionngo metoda dolgosrochnykh meteorologicheskikh prognozov dlya Arktiki, Trudy AANII, 34. ]Search in Google Scholar