1. bookVolume 116 (2019): Issue 3 (March 2019)
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
access type Open Access

The dumping of oscillatory phenomena in the process of bioethanol production by continuous fermentation

Published Online: 23 May 2020
Volume & Issue: Volume 116 (2019) - Issue 3 (March 2019)
Page range: 119 - 132
Received: 11 Mar 2019
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
Abstract

This article presents the results of numerical research on the dumping of oscillatory phenomena occurring in the continuous bioethanol production process. Proportional and proportional-integral types of controllers were tested for this purpose. Numerical analysis showed that the appropriate selection of the Kc value makes it possible to suppress the oscillations in the system. The introduction of the integral term improves the performance of control system. Using numerical calculations, it was shown that the PI controller is effective at dumping the occurring oscillations. The presence of the integral term allows the reduction of the gain coefficient value. After the proper selection of parameters, the PI controller effectively supresses the oscillations present in the system.

Keywords

[1] Nielsen, J., Villadsen, J., Liden, G., Bioreaction Engineering Principles, New York 2003.10.1007/978-1-4615-0767-3Search in Google Scholar

[2] Renewable Fuels Association, Ethanol strong, 2018 ethanol industry outlook,Search in Google Scholar

[3] https://www.ethanolresponse.com/wp-content/uploads/2018/02/2018-RFAEthanol-Industry-Outlook.pdf (access: 13.01.2019).Search in Google Scholar

[4] Strassle, C., Sonnleitner, B., Fiechter, A., A predictive model for the spontaneous synchronization of Saccharomyces cerevisiae grown in continuous culture. I. Concept, J. Biotechnol., 7, 1988, 299–318.10.1016/0168-1656(88)90042-9Search in Google Scholar

[5] Strassle, C., Sonnleitner, B., Fiechter, A., A predictive model for the spontaneous synchronization of Saccharomyces cerevisiae grown in continuous culture. II. Experimental verification, J. Biotechnol., 9, 1989, 191–208.10.1016/0168-1656(89)90108-9Search in Google Scholar

[6] Chen, C.-I., McDonald, K. A., Bisson, L., Oscillatory behaviour of Saccharomyces cerevisiae in continuous culture: Effects of pH and nitrogen levels, Biotechnol. Bioeng., 36, 1990, 19–27.10.1002/bit.260360104Search in Google Scholar

[7] Chen, C.-I., McDonald, K. A., Oscillatory behavior of Saccharomyces cerevisiae in continuous culture: II. Analysis of cell synchronization and metabolism, Biotechnol. Bioeng., 36, 1990, 28–38.10.1002/bit.260360105Search in Google Scholar

[8] Martegani, E., Porro, D., Ranzi, B. M., Alberghina, L., Involvement of a cell size control mechanism in the induction and maintenance of oscillations in continuous cultures of budding yeast, Biotechnol. Bioeng., 36, 1990, 453–459.10.1002/bit.260360504Search in Google Scholar

[9] Keulers, M., Satroutdinov, A. D., Suzuki, T., & Kuriyama, H., Synchronization affector of autonomous short-period-sustained oscillation of Saccharomyces cerevisiae, Yeast, 12, 1996, 673–682.10.1002/(SICI)1097-0061(19960615)12:7<673::AID-YEA958>3.0.CO;2-CSearch in Google Scholar

[10] Keulers, M., Suzuki, T., Satroutdinov, A. D., & Kuriyama, H., Autonomous metabolic oscillations in continuous culture of Saccharomycesm cerevisiae grown on ethanol, FEMS Microbiol. Lett., 142, 1996, 253–258.10.1111/j.1574-6968.1996.tb08439.xSearch in Google Scholar

[11] Astudillo I. C. P., Alzate C. A. C., Importance of stability study of continuous systems for ethanol production, J. Biotechnol., 151, 2011, 43–55.10.1016/j.jbiotec.2010.10.073Search in Google Scholar

[12] Jones K.D., Kompala D.S., Cybernetic model of the growth dynamics of Saccharomyces cerevisiae in batch and continuous cultures, J. Biotechnol., 71, 1999, 105–131.10.1016/S0168-1656(99)00017-6Search in Google Scholar

[13] Zhang Y., Henson M.A., Bifurcation analysis of continuous biochemical reactor models, Biotechnol. Prog., 17, 2001, 647–660.10.1021/bp010048w11485425Search in Google Scholar

[14] Gawdzik A., Tabis B., Figiel W., Zasady sterowania procesami technologii i inżynierii chemicznej. Skrypt dla studentów wyższych szkół technicznych, Wydawnictwo PK, Kraków 1991.Search in Google Scholar

[15] Ermentrout B., Simulating, analyzing, and animating dynamical systems, software, environments, and tools. A guide to XPPAUT for researchers and students, Philadelphia, 2002.10.1137/1.9780898718195Search in Google Scholar

[16] Doedel E. J., Pafenroth R. C., Champneys A. R., Fairgrieve T. F., Kuznetsov Y. A., Oldman B. E., Sandstede B., Wang X., AUTO 2000: Continuation and bifurcation software for ordinary differential equations (with Hom Cont), Montreal 2002.Search in Google Scholar

[17] Kincaid D., Cheney W., Numerical Analysis: Mathematics of Scientific Computing, American Mathematical Society 2002.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo