1. bookVolume 115 (2018): Issue 10 (October 2018)
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
access type Open Access

Modifications of the soft switching system resistant to disturbances in control systems of voltage sources inverters

Published Online: 21 May 2020
Volume & Issue: Volume 115 (2018) - Issue 10 (October 2018)
Page range: 141 - 155
Received: 24 Sep 2018
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
Abstract

Reduction of the switching losses in three-phase voltage source inverters can be achieved by using of soft switching systems that not only increase the efficiency of the inverters, but they also reduce the size of the semiconductor cooling circuits, that is especially important in traction vehicles. The majority of existing soft switching systems have some drawbacks that could be danger for inverter operation in the case of disturbances in control systems. The paper briefly describes the structure, operation principles and results of laboratory tests of the proposed soft switching system. Particular attention has been paid to the specific features of alternative versions of the proposed soft switching system, that allow to improve operating parameters of the basic system.

Keywords

[1] Feix G., Dieckerhoff S., Allmeling J., Schonberger J., Simple Methods to Calculate IGBT and Diode Conduction and Switching Losses, 13th European Conference on Power Electronics and Applications, EPE ‘09, Barcelona, Spain, 8–10 September 2009, 1–8.Search in Google Scholar

[2] Drofenik U., Kolar J.W., A General Scheme for Calculating Switching – and Conduction-Losses of Power Semiconductors in Numerical Circuit Simulations of Power Electronic Systems, 5th International Power Electronics Conference, IPEC-Niigata, Japan, 2005.Search in Google Scholar

[3] Maswood A.I., A switching loss study in SPWM igbt inverter, 2nd IEEE International Conference on Power and Energy, PECon 08, Johor Baharu, Malaysia, 1–3 December 2008, 609–613.10.1109/PECON.2008.4762548Search in Google Scholar

[4] Rajapakse A.D., Gole A.M., Wilson P.L., Approximate Loss Formulae for Estimation of IGBT Switching Losses through EMTP-type Simulations, International Conference on Power Systems Transients, IPST’05, Paper No. 184, Canada, 19–23 June 2005, 1–6.Search in Google Scholar

[5] Hiraki E., Tanaka T., Nakaoka M., Zero-Voltage and Zero-Current Soft - Switching PWM Inverter, 36th Power Electronics Specialists Conference PESC ‘05, Recife, Brazil, 12–16 June 2005,798–803.10.1109/EPE.2005.219661Search in Google Scholar

[6] Martinez B., Li R., Ma K., Xu D., Hard Switching and Soft Switching Inverters Efficiency Evaluation, International Conference on Electrical Machines and Systems ICEMS 2008, Wuhan, China, 17–20 October 2008, 1752–1757.Search in Google Scholar

[7] Amini M.R., Farzanehfard H., Three-Phase Soft-Switching Inverter With Minimum Components, IEEE Transactions on Industrial Electronics, vol. 58, June 2011, Iss. 6, 2258–2264.10.1109/TIE.2010.2064280Search in Google Scholar

[8] Khalilian M., Farzanehfard H., Adib E., A novel quasi-resonant three-phase soft-switching inverter, 3rd Power Electronics and Drive Systems Technology, PEDSTC, 2012, 471–476.10.1109/PEDSTC.2012.6183376Search in Google Scholar

[9] Liu Y., Wu W., Blaabjerg F., Chung H.S., A modified two-level three-phase quasi-soft-switching inverter, Twenty-Ninth Annual IEEE Applied Power Electronics Conference and Exposition, APEC, 2014, 261–267.10.1109/APEC.2014.6803319Search in Google Scholar

[10] Panda B., Bagarty D.P., Behera S., Soft-switching dc-ac Converters: A brief literature review, Int. Journal of Engineering Science and Technology, vol. 2, 2010, 7004–7020.Search in Google Scholar

[11] Wu W., Geng P., Chen J., Ye Y., A Novel Three-Phase Quasi-Soft-Switching DC/AC Inverter, IEEE International Symposium on Power Electronics for Distributed Generation Systems, PEDG, Hefei, China, 16–18 June 2010, 477–480.10.1109/PEDG.2010.5545836Search in Google Scholar

[12] Hiraki E., Tanaka T., Nakaoka M., Zero-Voltage and Zero-Current Soft Switching PWM Inverter, 36th Power Electronics Specialists Conference PESC ‘05, Recife, Brazil, 12–16 June 2005, 798–803.10.1109/EPE.2005.219661Search in Google Scholar

[13] Chandhaket S., Yoshida M., Eiji H., Nakamura M., Konishi Y., Nakaoka M., Multi-functional Digitally-Controlled Bidirectional Interactive Three-phase Soft-Switching PWM Converter with Resonant Snubbers, IEEE 32nd Annual Power Electronics Specialists Conference, PESC, vol. 2,Vancouver, Canada 2001, 589–593.Search in Google Scholar

[14] Chao K.H., Liaw C.M., Three-phase soft-switching inverter for induction motor drives Iyomori-Three, IEE Proceedings – Electric Power Appl., vol. 148, Jan 2001, 8–20.10.1049/ip-epa:20010123Search in Google Scholar

[15] Galea C., New topology of three phase soft switching inverter using a dual auxiliary circuit, 15th European Conference on Power Electronics and Appl., EPE 2013, 1–9.10.1109/EPE.2013.6631812Search in Google Scholar

[16] Karyś S., Power loss comparison for the ARCP resonant inverter regard to control method, Przegląd Elektrotechniczny, 84, nr 11, 2008, 64–68.Search in Google Scholar

[17] Li Y., Lee F.C., Boroyevich D., A Three-Phase Soft-Transition Inverter with a Novel Control Strategy for Zero-Current and Near Zero-Voltage Switching, IEEE Transactions on Power Electronics, vol. 16, Sep 2001, 710–723.10.1109/63.949504Search in Google Scholar

[18] Martinez B., Li R., Ma K., Xu D., Hard Switching and Soft Switching Inverters Efficiency Evaluation, International Conference on Electrical Machines and Systems, ICEMS, Wuhan, China, 17–20 October 2008, 1752–1757.Search in Google Scholar

[19] Keir A. S., Soft switched Tyree-phase inwerter with staggered re sonant revovery system, Patent US5576943, US 1996.Search in Google Scholar

[20] Karyś S., Three-Phase Soft-Switching Inverter with Coupled Inductors, Experimental Results, Bulletin of the Polish Academy of Sciences – Technical Sciences, 59, Zeszyt 4, Warsaw, Grudzień 2011, 535–540.10.2478/v10175-011-0065-3Search in Google Scholar

[21] Zhang H., Chu E., Liu X., Wang Q., Hou L.,, Resonance electrode type three phase soft switch inverter circuit, Patent CN101478258 (A), China 2010.Search in Google Scholar

[22] Sun P., Lai J., Qian H., Yu W., Smith C., Bates J., High Efficiency Three-Phase Soft-Switching Inverter for Electric Vehicle Drives, IEEE Vehicle Power and Propulsion Conference, VPPC ‘09, Dearborn, USA, 7–10 Sept. 2009, 761–766.Search in Google Scholar

[23] Mazgaj W., Rozegnał B., Szular Z., Sposób łagodnego przełączania tranzystorów trójfazowego, dwupoziomowego falownika napięcia oraz układ łagodnego przełączania tranzystorów trójfazowego, dwupoziomowego falownika napięcia, Polish patent PAT.226065, 2016.Search in Google Scholar

[24] Mazgaj W., Rozegnał B., Szular Z., Trójfazowy dwupoziomowy falownik napięcia z łagodnym przełączaniem tranzystorów odpornym na zakłócenia sterowania, Przegląd Elektrotechniczny, R. 92, NR 3/2016, 148–153.10.15199/48.2016.03.36Search in Google Scholar

[25] Mazgaj W., Rozegnał B., Szular Z., A novel soft switching system for three-phase voltage source inverter, Czasopismo Techniczne, 2-E/2016, 3–15.Search in Google Scholar

[26] Mazgaj W., Rozegnał B., Szular Z., Sposób łagodnego przełączania tranzystorów trójfazowego, dwupoziomowego falownika napięcia oraz układ łagodnego przełączania tranzystorów trójfazowego, dwupoziomowego falownika napięcia, Polish additional patent application P. 415597, 2016.Search in Google Scholar

[27] Mazgaj W., Rozegnał. B, Szular Z., Sposób łagodnego przełączania tranzystorów trójfazowego, dwupoziomowego falownika napięcia oraz układ łagodnego przełączania tranzystorów trójfazowego, dwupoziomowego falownika napięcia, Polish additional patent application P. 418673, 2016.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo