1. bookVolume 114 (2017): Issue 6 (June 2017)
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
Open Access

Neuro-Fuzzy Predictions of Construction Site Completion Dates

Published Online: 26 May 2020
Volume & Issue: Volume 114 (2017) - Issue 6 (June 2017)
Page range: 51 - 58
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
Abstract

The results from two types of multi-layer perceptron artificial neural networks (Matlab R2015a was used) were compared. The first one, with only one neuron in an output layer having the value of delay in completion date of building site. The output layer of the second artificial neural network is created by three neurons. These three values represent the same delay, but in a form of three values of membership functions to fuzzy sets. In order to evaluate the accuracy of predictions, the mean squared error was used. It was necessary to find the best method of defuzzyfication predicted delays to compare the results from these two, aforementioned artificial neural networks. The level of prediction accuracy measured by mean squared error was discussed, too.

Keywords

[1] Tadeusiewicz R., Nałęcz M., Biocybernetyka i inżynieria medyczna 2000. T. 6 Sieci Neuronowe, Akademicka Oficyna Wydawnicza EXIT, Warsaw 2000.Zadeh L.A., Fuzzy Sets, Information and Control, 8, 1965, 338–353.10.1016/S0019-9958(65)90241-XSearch in Google Scholar

[2] Zadeh L.A., Knowledge representation in Fuzzy Logic, IEEE Transaction on Knowledge and Data Engineering, Vol. 1, No. 1, March 1989.10.1109/69.43406Search in Google Scholar

[3] Bartkiewicz J. (red. Zielińśki J.S.), Inteligentne systemy w zarządzaniu, PWN, Warszawa 2000.Search in Google Scholar

[4] Osowski S., Sieci neuronowe w ujęciu algorytmicznym, WNT, Warszawa 1996.Search in Google Scholar

[5] Statsoft Polska Sp. z o.o., Wprowadzenie do sieci neuronowych, Statsoft, Kraków 2001.Search in Google Scholar

[6] Ibadov N., Determination of the Risk Factors Impact on the Construction Projects Implementation Using Fuzzy Sets Theory, Acta Physica Polonica A, Vol. 130, No. 1, 2016, p. 107–111, DOI: 10.12693/APhysPolA.130.107.10.12693/APhysPolA.130.107Search in Google Scholar

[7] Ibadov N., Fuzzy estimation of activities duration in construction projects, Archives of Civil Engineering, Vol. 61, Issue 2, 2015), 23–34. DOI: 10.1515/ace-2015-0012.10.1515/ace-2015-0012Search in Google Scholar

[8] Anysz H. Porównanie trafności prognoz sztucznych sieci neuronowych MLP z jedną i dwoma warstwami ukrytymi na przykładzie prognoz wyników finansowych przedsiębiorstw budowlanych, Logistyka 3/2014, 87–94.Search in Google Scholar

[9] Anysz H., Zbiciak A., Ibadov N., The influence of input data standardization method on prediction accuracy of artificial neural networks, Procedia Engineering 153, 2016, 66–70, DOI: 10.1016/j.proeng.2016.08.081.10.1016/j.proeng.2016.08.081Search in Google Scholar

[10] Rutkowski L., Metody i techniki sztucznej inteligencji, PWN, Warszawa 2012.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo