Open Access

Metal foams as structural packing in the construction of process equipment

   | May 23, 2020

Cite

[1] Boomsma K., Poulikakos D., Zwick F., Metal foams as compact high performance heat exchangers, Mechanics of Materials, 35, 2003, 1161–1176.10.1016/j.mechmat.2003.02.001Search in Google Scholar

[2] Cha J.S., Ghiaasiaan S.M., Kirkconnell C.S., Longitudinal hydraulic resistance Parameters of cryocooler and stirling Regenerators in periodic flow, Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference – CEC, 53, 2008, 259–266.10.1063/1.2908555Search in Google Scholar

[3] Cookson E.J., Floyd D.E., Shih A.J., Design, manufacture, and analysis of metal foam electrical resistance heather, Int. J. Mechanical Sciences, 48, 2006, 1314–1322.10.1016/j.ijmecsci.2006.05.006Search in Google Scholar

[4] Dyga R., Płaczek M., Heat transfer through metal foam–fluid system, Experimental Thermal and Fluid Science, Vol. 65, 2015, 1–12.10.1016/j.expthermflusci.2015.02.021Search in Google Scholar

[5] Dyga R., Płaczek M., Przepuszczalność i współczynnik inercji pian aluminiowych o komórkach otwartych, Inżynieria i Aparatura Chemiczna, 4, 2013, 300–301.Search in Google Scholar

[6] Hu H., Zhu Y., Ding G, Sun S., Effect of oil on two-phase pressure drop of refrigerant flow boiling inside circular tubes filled with metal foam, International Journal of Refrigeration, 36, 2013, 516–526.10.1016/j.ijrefrig.2012.10.037Search in Google Scholar

[7] Incera Garrido G., Patcas F.C., Lang S., Kraushaar-Czarnetzki B., Mass transfer and pressure drop in ceramic foams: Adescription for differentporesizesand porosities, Chemical Engineering Science, Vol. 63, 2008, 5202–5217.10.1016/j.ces.2008.06.015Search in Google Scholar

[8] Ji W.-T., Qu Z.-G., Li Z.-Y., Guo J.-F., Zhang D.-C., Tao W.-Q., Pool boiling heat transfer of R134a on single horizontal tube surfaces sintered with open-celled copper foam, International Journal of Thermal Sciences, 50, 2011, 2248–2255.10.1016/j.ijthermalsci.2011.05.018Search in Google Scholar

[9] Kamath P.M., Balaji C., Venkateshan S.P., Experimental investigation of flow assisted mixed convection in high porosity foams in vertical channels, International Journal of Heat and Mass Transfer, 54, 2011, 5231–5241.10.1016/j.ijheatmasstransfer.2011.08.020Search in Google Scholar

[10] Lévêque J., Rouzineau D., Prévost M., Meyer M., Hydrodynamic and mass transfer efficiency of ceramic foam packing applied to distillation, Chemical Engineering Science, 64, 2009, 2607–2616.10.1016/j.ces.2009.02.010Search in Google Scholar

[11] Ozmat B., Leyda B., Benson B., Thermal applications of open cell metal foams, Character and Manufacturing Processes, Vol. 19(5), 2004, 839–862.10.1081/AMP-200030568Search in Google Scholar

[12] Pangarkar K.,Schildhauer T.J., van Ommen J.R., Nijenhuis J., Moulijn J.A., Kapteijn F., Heat transport in structured packings with co-current downflow of gas and liquid, Chemical Engineering Science, 65, 2010, 420–426.10.1016/j.ces.2009.08.018Search in Google Scholar

[13] Paserin V., Marcuson S., Shu J., Wilkinson D.S., The chemical vapor deposition technique for Inco nickel foam production–manufacturing benefits and potential applications, Cellular Metalls and Foaming Technology, 2003, ftp://207.102.129.71/Richard/stuff/Ni-MH/metfoam_03_paper.pdf (access: 17.11.2013).Search in Google Scholar

[14] Ribeiro G.B., Barbosa Jr.J.R., Comparison of metal foam and louvered fins as air-side heat transfer enhancement media for miniaturized condensers, Applied Thermal Engineering, 51, 2013, 334–337.10.1016/j.applthermaleng.2012.09.008Search in Google Scholar

[15] Stemmet C.P., Meeuwse M., van der Schaaf J., Kuster B.F.M., Schouten J.C., Gas–liquid mass transfer and axial dispersion in solid foam packings, Chemical Engineering Science, 62, 2007, 5444–5450.10.1016/j.ces.2007.02.016Search in Google Scholar

[16] Sertkaya A.A., Altınısık K., Dincer K., Experimental investigation of thermal performance of aluminum finned heat exchangers and open-cell aluminum foam heat exchangers, Experimental Thermal and Fluid Science, 36, 2012, 86–92.10.1016/j.expthermflusci.2011.08.008Search in Google Scholar

[17] Tadrist L., Miscevic M., Rahli O., Topin F., About the use of fibrous materials in compact heat exchangers, Experimental Thermal and Fluid Science, 28, 2004, 193–199.10.1016/S0894-1777(03)00039-6Search in Google Scholar

[18] Tian Y., Zhao C.Y., Thermal and exergetic analysis of Metal Foam-enhanced Cascaded Thermal Energy Storage (MF-CTES), International Journal of Heat and Mass Transfer, 58, 2013, 86–96.10.1016/j.ijheatmasstransfer.2012.11.034Search in Google Scholar

[19] Tschentscher R., Schubert M., Bieberle A., Nijhuis T.A., van der Schaaf J., Hampel U., Schouten J.C., Tomography measurements of gas holdup in rotating foam reactors with Newtonian, non-Newtonian and foaming liquids, Chemical Engineering Science, 66, 2011, 3317–3327.10.1016/j.ces.2011.01.051Search in Google Scholar

[20] Vadwala P.H., Thermal Energy Storage in Copper Foams filled with Paraffin Wax, Master of Applied Science, Mechanical & Industrial Engineering University of Toronto, 2011.Search in Google Scholar

[21] Wang K., Ju Y.L., Lu X.S., Gu A.Z., On the performance of copper foaming metal in the heat exchangers of pulse tube refrigerator, Cryogenics, 47, 2007, 19–24.10.1016/j.cryogenics.2006.08.010Search in Google Scholar

[22] Wang P., Liu D.Y., Xu C., Numerical study of heat transfer enhancement in the receiver tube of direct steam generation with parabolic trough by inserting metal foams, Applied Energy, 102, 2013, 449–460.10.1016/j.apenergy.2012.07.026Search in Google Scholar

[23] Xu Z.G., Qu Z.G., Zhao C.Y., Tao W.Q., Pool boiling heat transfer on open-celled metallic foam sintered surface under saturation condition, International Journal of Heat and Mass Transfer, 54, 2011, 3856–3867.10.1016/j.ijheatmasstransfer.2011.04.043Search in Google Scholar