1. bookVolume 114 (2017): Issue 3 (March 2017)
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
access type Open Access

A thermodynamic and technical analysis of a zero-emission power plant in pomerania

Published Online: 23 May 2020
Volume & Issue: Volume 114 (2017) - Issue 3 (March 2017)
Page range: 197 - 210
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
Abstract

This paper presents the results of a thermodynamic analysis and a method of selecting individual devices and their components to design a zero-emission power plant project in Pomerania. Another aim of the paper is to present the technological abilities of the application of gas-steam turbines with a particular emphasis on enhanced energy conversion in the construction of a wet combustion chamber using cooling water transpiration and a gas-steam expander.

Keywords

[1] Ziółkowski P., Badur J., Clean Gas Technologies – towards zero-emission repowering of Pomerania, Trans IFFM, no 124, 2012, 51–80.Search in Google Scholar

[2] Ziółkowski P., Zakrzewski W., Badur J., Innowacyjny obieg termodynamiczny oparty na poślizgu, mobilności, transpiracji i innych zjawiskach nano-przepływowych, [in:] B. Węglowski, P. Duda (Eds.), Analiza systemów energetycznych, Wyd. Pol. Krakowskiej, Kraków 2013, 351–360.Search in Google Scholar

[3] Ziółkowski P., Badur J., Selection of thermodynamic parameters in order to improve the environmental performance on the gas-steam turbine cycle, [in:] K. Wójs, T. Tietze (Eds.), Aktualne Zagadnienia Energetyki Tom III, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2014, 445–456.Search in Google Scholar

[4] Badur J., Ziółkowski P., Modelowanie konwersji energii w nano-skali, [in:] B. Węglowski, P. Duda (Eds.), Analiza systemów energetycznych, Wyd. Pol. Krakowskiej, Kraków 2013, 15–28.Search in Google Scholar

[5] Feidt M., Thermodynamics of energy systems; a review and perspectives, Journal of Applied Fluid Mechanics, vol. 5(2), 2012, 85–98.10.36884/jafm.5.02.12171Search in Google Scholar

[6] Badur J., Karcz M. Lemański M., On the mass and momentum transport in the Navier-Stokes slip layer, Microfluid Nanofluid, vol. 11, 2011, 439–449.10.1007/s10404-011-0809-2Search in Google Scholar

[7] Badur J., Karcz M., Lemański M., Nastałek L., Foundations of the Navier-Stokes boundary conditions in fluid mechanics, Trans IFFM, No. 123, 2011, 3–55.Search in Google Scholar

[8] Reese J.M., Zheng Y, Lockerby D.A., Computing the near-wall region in gas micro-and nanofluidics:critical Knudsen layer phenomena, J. Computational and Theoretical Nanoscience, vol. 4(4), 2007, 807–813.10.1166/jctn.2007.2372Search in Google Scholar

[9] Nowak W., Fluidalne spalanie węgla w tlenie, Energetyka Cieplna i Zawodowa, no 2, 2010, 46–48.Search in Google Scholar

[10] Krzywański J., Czakiert T., Muskała W., Nowak W., Modelling of CO2, CO, SO2, O2 and NOx emissions from the oxy-fuel combustion in a circulating fluidized bed, Fuel Processing Technology, vol. 92, 2011, 590–596.10.1016/j.fuproc.2010.11.015Search in Google Scholar

[11] Czakiert T., Sztekler K., Karski S., Markiewicz D., Nowak W., Oxy-fuel circulating fluidized bed combustion in a small pilot-scale test rig, Fuel Processing Technology, vol. 91, 2010, 1617–1623.10.1016/j.fuproc.2010.06.010Search in Google Scholar

[12] Kotowicz J., Brzęczek M., Job M., Efficiency of supercritical coal power stations with integrated CO2 capture and compression systems based on oxy-combustion technology, Acta Energetica, no 1/26, 2016, 69–76.10.12736/issn.2300-3022.2016106Search in Google Scholar

[13] Skorek-Osikowska A., Bartela Ł., Kotowicz J., A comparative thermodynamic, economic and risk analysis concerning implementation of oxy-combustion power plants integrated with cryogenic and hybrid air separation units, Energy Conversion and Management, vol. 92, 2015, 421–430.10.1016/j.enconman.2014.12.079Search in Google Scholar

[14] Kotowicz J., Job M., Thermodynamic and economic analysis of a gas turbine combined cycle plant with oxy-combustion, Archives of thermodynamics, vol. 34(4), 2013, 215–233.10.2478/aoter-2013-0039Search in Google Scholar

[15] Horlock J., Advanced gas turbine cycles, Pergamon, Elsevier Sc. Ltd., Oxford, 2003.10.1016/B978-008044273-0/50004-3Search in Google Scholar

[16] Mathieu Ph., Nihart R., Sensitivity analysis of the MATIANT cycle, Energy Conversion and Management, vol. 40(15), 1999, 1687–1700.10.1016/S0196-8904(99)00062-XSearch in Google Scholar

[17] Yantovsky E., Górski J., Shokotov M., Zero emissions power cycles, Taylor&Francis Group, Boca Raton, 2009.10.1201/9781420087925Search in Google Scholar

[18] Yang H.J., Kang D.W., Ahn J.H., Kim T.S., Evaluation of design performance of the semi-closed oxy-fuel combustion combined cycle, Proceedings of ASME Turbo Expo 2012, GT2012-69141, 1–12.10.1115/GT2012-69141Search in Google Scholar

[19] Sanz W., Hustad Carl-W., Jericha H., First generation Graz cycle power plant for near-term deployment, Proceedings of ASME Turbo Expo 2011, GT2011-45135, 1–11.10.1115/GT2011-45135Search in Google Scholar

[20] Kolev N., Schaber K., Kolev D., A new type of a gas – steam turbine cycle with increased efficiency, Applied Thermal Engineering, vol. 21, 2001, 391–405.10.1016/S1359-4311(00)00059-4Search in Google Scholar

[21] Anderson R., MacAdam S., Viteri F., Davies D., Downs J., Paliszewski A., Adapting gas turbines to zero emission oxy-fuel power plants, ASME Paper No.GT2008-51377, 2008, 1–11.10.1115/GT2008-51377Search in Google Scholar

[22] Chodkiewicz R., Porochnicki J., Kaczan B., Steam – gas condensing turbine system for power and heat generation, ASME Paper No. 2001-GT-0097, 2001, 1–8.Search in Google Scholar

[23] Ziółkowski P., Badur J., Navier number and transition to turbulence, Journal of Physics: Conference Series, vol. 530, 2014, 012035.10.1088/1742-6596/530/1/012035Search in Google Scholar

[24] Ziółkowski P., Badur J., On the unsteady Reynolds thermal transpiration law, Journal of Physics: Conference Series, vol. 760, 2016, 012041.10.1088/1742-6596/760/1/012041Search in Google Scholar

[25] Szwaba R., Ochrymiuk T., Transpiration effects in perforated plate aerodynamics, Journal of Physics: Conference Series, vol. 760, 2016, 012032.10.1088/1742-6596/760/1/012032Search in Google Scholar

[26] Bunker R., Gas turbine heat transfer ten remaining hot gas path challenges, ASME Journal of Turbomachinary, vol, 129(2), 2007, 193–201.10.1115/1.2464142Search in Google Scholar

[27] Badur J., Ziółkowski P., Zakrzewski W., Sławiński D., Kornet S., Kowalczyk T., Hernet J., Piotrowski R., Felicjancik J., Ziółkowski P.J., An advanced Thermal-FSI approach to flow heating/cooling, Journal of Physics: Conference Series, vol. 530, 2014, 012039.10.1088/1742-6596/530/1/012039Search in Google Scholar

[28] Taler J., A method of determining local heat flux in boiler furnace, Int. J. Heat Mass Transfer, vol. 35(6), 1992, 1625–1634.10.1016/0017-9310(92)90051-SSearch in Google Scholar

[29] Taler D., A new heat transfer correlation for transition and turbulent fluid flow in tubes, International Journal of Thermal Sciences, vol. 108, 2016, 108–122.10.1016/j.ijthermalsci.2016.04.022Search in Google Scholar

[30] Ocłoń P., Łopata S., Modeling of the flow distribution inside the collectors of the high performance heat exchanger, Technical Transactions, series Mechanics, vol. 7(4), 2011, 391–400.Search in Google Scholar

[31] Taler D., Tokarczyk J., Modeling of pipeline heating, Technical Transactions, series Mechanics, vol. 11(6), 2012, 127–134.Search in Google Scholar

[32] Bejan A., Kraus A.D., Heat transfer handbook, 2003 John Wiley & Sons, Hoboken New Jersey 2003.Search in Google Scholar

[33] Gyftopoulos E,P., Beretta G.P., Thermodynamics Foundations and Applications, Dover Pub. Mineola, New York 2005.Search in Google Scholar

[34] Banaszkiewicz M., Multilevel approach to lifetime assessment of steam turbines, International Journal of Fatigue, vol. 73, 2015, 39–47.10.1016/j.ijfatigue.2014.10.009Search in Google Scholar

[35] Hu X.X., Sakiyama T., Matsuda H., Morita C., Fundamental vibration of rotating cantilever blades with pre-twist, Journal of Sound and Vibration, vol. 271, 2004, 47–66.10.1016/S0022-460X(03)00262-1Search in Google Scholar

[36] Szewalski R., O racjonalne obliczanie długości łopatek w akcyjnych turbinach parowych, Czasopismo Techniczne, vol. 55, Lwów 1930, 12–21.Search in Google Scholar

[37] Banaś K., Badur J., On an approach to the thermo-elastic-plastic failure based on the Burzyński-Pęcherski criterion, Proc. 11th Int. Cong. On Thermal Stresses, University of Salerno, Italy, 5–9 June 2016, 19–22.Search in Google Scholar

[38] Badur J., Ziółkowski P., Sławiński D., Kornet S., An approach for estimation of water wall degradation within pulverized-coal boilers, Energy, vol. 92, 2015, 142–152.10.1016/j.energy.2015.04.061Search in Google Scholar

[39] Burzyński W.T., Teoretyczne podstawy hipotez natężenia, Czasopismo Techniczne, vol. 47, Lwów 1929, 1–41.Search in Google Scholar

[40] Huber T.M., Właściwa praca odkształcenia jako miara wytężenia materiału, Czasopismo Techniczne, vol. 22, Lwów 1904.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo