1. bookVolume 118 (2021): Issue 1 (January 2021)
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
access type Open Access

Depth control for biomimetic and hybrid unmanned underwater vehicles

Published Online: 22 Dec 2021
Volume & Issue: Volume 118 (2021) - Issue 1 (January 2021)
Page range: -
Received: 07 Jul 2021
Accepted: 17 Dec 2021
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
Abstract

Unmanned underwater vehicles which use biomimetic mechanisms are becoming increasingly useful in the realisation of tasks requiring silent and efficient propulsion. Complex fish kinematics are simplified to some extent and implemented in such vehicles. One of the essential fish behaviours is their ability to adjust their buoyancy using a swim bladder. This paper covers the issues concerning the implementation of artificial swim bladders as well as depth regulators in two underwater vehicles: biomimetic and hybrid. The control of vehicle depth through buoyancy change was examined in the computer simulation and in the experiment. Two types of artificial swim bladder were tested – a rigid cylinder with a piston and an elastic container with a water pump.

Keywords

Ai, X., Kang, S., & Chou, W. (2018). System Design and Experiment of the Hybrid Underwater Vehicle. 2018 International Conference on Control and Robots, ICCR 2018, 68–72. https://doi.org/10.1109/ICCR.2018.853449310.1109/ICCR.2018.8534493 Search in Google Scholar

Anderson, J.M., & Chhabra, N.K. (2006). Maneuvering and Stability Performance of a Robotic Tuna. Integrative and Comparative Biology, 42(1), 118–126. https://doi.org/10.1093/icb/42.1.11810.1093/icb/42.1.11821708700 Search in Google Scholar

Anton, M., & Listak, M. (2011). Hydrodynamic optimization of a relative link lengths for a biomimetic robotic fish. 2011 15th International Conference on Advanced Robotics (ICAR), 530–535. https://doi.org/10.1109/ICAR.2011.608864410.1109/ICAR.2011.6088644 Search in Google Scholar

Aras, M.S.M., Abdullah, S.S., Zambri, M.K.M., & Basar M.F. (2015). Auto depth control for underwater remotely operated vehicles using a flexible ballast tank system. https://www.researchgate.net/publication/283533128_Auto_depth_control_for_underwater_remotely_operated_vehicles_using_a_flexible_ballast_tank_system Search in Google Scholar

Cai, M., Wang, Y., Wang, S., Wang, R., Ren, Y., & Tan, M. (2020). Grasping Marine Products with Hybrid-Driven Underwater Vehicle-Manipulator System. IEEE Transactions on Automation Science and Engineering, 17(3), 1443–1454. https://doi.org/10.1109/TASE.2019.295778210.1109/TASE.2019.2957782 Search in Google Scholar

Chu, W.-S., Lee, K.-T., Song, S.-H., Han, M.-W., Lee, J.-Y., Kim, H.-S., Kim, M.-S., Park, Y.-J., Cho, K.-J., & Ahn, S.-H. (2012). Review of biomimetic underwater robots using smart actuators. International Journal of Precision Engineering and Manufacturing, 13(7), 1281–1292. https://doi.org/10.1007/s12541-012-0171-710.1007/s12541-012-0171-7 Search in Google Scholar

Colquhoun, C.T. (n.d.). Development of a biomimetic robotic fish. Retrieved July 2, 2019, from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.538.7314&rep=rep1&type=pdf Search in Google Scholar

Conry, M., Keefe, A., Ober, W., Rufo, M., & Shane, D. (2013). BIOSwimmer: Enabling technology for port security. 2013 IEEE International Conference on Technologies for Homeland Security, HST 2013, 364–368. https://doi.org/10.1109/THS.2013.669903110.1109/THS.2013.6699031 Search in Google Scholar

Fossen, T.I. (2011). Handbook of marine craft hydrodynamics and motion control. Wiley.10.1002/9781119994138 Search in Google Scholar

Joe, H., & Yu, S.-C. (2016). Iceberg worm: Biomimetic AUV for sea ice thickness survey using non-contact laser ultrasonic method. 2016 IEEE/OES Autonomous Underwater Vehicles (AUV), 44–48. https://doi.org/10.1109/AUV.2016.777871810.1109/AUV.2016.7778718 Search in Google Scholar

Katzschmann, R.K., DelPreto, J., MacCurdy, R., & Rus, D. (2018). Exploration of underwater life with an acoustically controlled soft robotic fish. Science Robotics, 3(16), eaar3449. https://doi.org/10.1126/scirobotics.aar344910.1126/scirobotics.aar344933141748 Search in Google Scholar

Lauder, G.V. (2015). Fish Locomotion: Recent Advances and New Directions. Annual Review of Marine Science, 7(1), 521–545. https://doi.org/10.1146/annurev-marine-010814-01561410.1146/annurev-marine-010814-01561425251278 Search in Google Scholar

Le Zhang, We, Yonghui Hu, Dandan Zhang, & Long Wang. (2007). Development and depth control of biomimetic robotic fish. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 3560–3565. https://doi.org/10.1109/IROS.2007.439899710.1109/IROS.2007.4398997 Search in Google Scholar

Liang, J., Wei, H., Wang, T., Wen, L., Wang, S., & Liu, M. (2009). Experimental Research on Biorobotic Autonomous Undersea Vehicle. In Underwater Vehicles. InTech. https://doi.org/10.5772/670210.5772/6702 Search in Google Scholar

Low, K.H. (2011). Current and future trends of biologically inspired underwater vehicles. 2011 Defense Science Research Conference and Expo (DSR), 1–8. https://doi.org/10.1109/DSR.2011.602688710.1109/DSR.2011.6026887 Search in Google Scholar

Maalouf, D., Creuze, V., Chemori, A., Tamanaja, I.T., Mercado, E.C., Muñoz, J.T., Lozano, R., & Tempier, O. (2015). Real-Time Experimental Comparison of Two Depth Control Schemes for Underwater Vehicles. International Journal of Advanced Robotic Systems, 12(2), 13. https://doi.org/10.5772/5918510.5772/59185 Search in Google Scholar

Mai, C., Pedersen, S., Hansen, L., Jepsen, K., & Yang, Z. (2017). Modeling and Control of Industrial ROV’s for Semi-Autonomous Subsea Maintenance Services. IFAC-PapersOnLine, 50(1), 13686–13691. https://doi.org/10.1016/J.IFACOL.2017.08.253510.1016/j.ifacol.2017.08.2535 Search in Google Scholar

Medvedev, A.V., Kostenko, V.V., & Tolstonogov, A.Y. (2017a). Depth control methods of variable buoyancy AUV. 2017 IEEE OES International Symposium on Underwater Technology, UT 2017. https://doi.org/10.1109/UT.2017.789033310.1109/UT.2017.7890333 Search in Google Scholar

Medvedev, A.V., Kostenko, V.V., & Tolstonogov, A.Y. (2017b, March 29). Depth control methods of variable buoyancy AUV. 2017 IEEE OES International Symposium on Underwater Technology, UT 2017. https://doi.org/10.1109/UT.2017.789033310.1109/UT.2017.7890333 Search in Google Scholar

Melo, J., & Matos, A. (2015). A Pitch-Depth Bottom Following Controller for AUVs using Eigenstructure Assignment. IFAC-PapersOnLine, 48(16), 43–48. https://doi.org/10.1016/J.IFACOL.2015.10.25610.1016/j.ifacol.2015.10.256 Search in Google Scholar

Minh-Thuan, L., Truong-Thinh, N., & Ngoc-Phuong, N. (2011). Study of artificial fish bladder system for robot fish. 2011 IEEE International Conference on Robotics and Biomimetics, 2126–2130. https://doi.org/10.1109/ROBIO.2011.618160610.1109/ROBIO.2011.6181606 Search in Google Scholar

Morawski, M., Malec, M., Szymak, P., & Trzmiel, A. (2014). Analysis of parameters of traveling wave impact on the speed of biomimetic underwater vehicle. In Solid State Phenomena (Vol. 210). https://doi.org/10.4028/www.scientific.net/SSP.210.27310.4028/www.scientific.net/SSP.210.273 Search in Google Scholar

Morawski, M., Słota, A., Zając, J., & Malec, M. (2020). Fish-like shaped robot for underwater surveillance and reconnaissance – Hull design and study of drag and noise. Ocean Engineering, 217(March), 1–10. https://doi.org/10.1016/j.oceaneng.2020.10788910.1016/j.oceaneng.2020.107889 Search in Google Scholar

Morawski, M., Słota, A., Zając, J., Malec, M., & Krupa, K. (2018). Hardware and low-level control of biomimetic underwater vehicle designed to perform ISR tasks. Journal of Marine Engineering and Technology, 16(4). https://doi.org/10.1080/20464177.2017.138708910.1080/20464177.2017.1387089 Search in Google Scholar

Morgansen, K.A., Triplett, B.I., & Klein, D.J. (2007). Geometric Methods for Modeling and Control of Free-Swimming Fin-Actuated Underwater Vehicles. IEEE Transactions on Robotics, 23(6), 1184–1199. https://doi.org/10.1109/LED.2007.91162510.1109/LED.2007.911625 Search in Google Scholar

Nguyen, Q.S., Park, H.C., & Byun, D. (2011). Thrust Analysis of a Fish Robot Actuated by Piezoceramic Composite Actuators. Journal of Bionic Engineering, 8(2), 158–164. https://doi.org/10.1016/S1672-6529(11)60019-X10.1016/S1672-6529(11)60019-X Search in Google Scholar

Nguyen, T.-T., Nguyen, N.-P., & Dang, M.-N. (2011). Swimming of robotic fish based biologically-inspired approach. 11th International Conference on Control, Automation and Systems (ICCAS), 625–630. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6106079 Search in Google Scholar

Niu, C., Zhang, L., Bi, S., & Cai, Y. (2012). Development and depth control of a robotic fish mimicking cownose ray. Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics, ROBIO 2012, 814–818. https://doi.org/10.1109/ROBIO.2012.649106810.1109/ROBIO.2012.6491068 Search in Google Scholar

Robert, K., Huvenne, V.A.I., Georgiopoulou, A., Jones, D.O.B., Marsh, L.D.O., Carter, G., & Chaumillon, L. (2017). New approaches to high-resolution mapping of marine vertical structures. Scientific Reports, 7(1), 9005. https://doi.org/10.1038/s41598-017-09382-z10.1038/s41598-017-09382-z556719728827612 Search in Google Scholar

Singh, W., Örnólfsdóttir, E.B., & Stefansson, G. (2014). A Small-Scale Comparison of Iceland Scallop Size Distributions Obtained from a Camera Based Autonomous Underwater Vehicle and Dredge Survey. PLoS ONE, 9(10), e109369. https://doi.org/10.1371/journal.pone.010936910.1371/journal.pone.0109369419377825303243 Search in Google Scholar

Tangorra, J.L., Mignano, A.P., Carryon, G.N., & Kahn, J.C. (2011). Biologically derived models of the sunfish for experimental investigations of multi-fin swimming. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 580–587. https://doi.org/10.1109/IROS.2011.609509410.1109/IROS.2011.6095094 Search in Google Scholar

Wen, L., Wang, T., Wu, G., Liang, J., & Wang, C. (2012). Novel Method for the Modeling and Control Investigation of Efficient Swimming for Robotic Fish. IEEE Transactions on Industrial Electronics, 59(8), 3176–3188. https://doi.org/10.1109/TIE.2011.215181210.1109/TIE.2011.2151812 Search in Google Scholar

Xiang, X., Yu, C., Niu, Z., & Zhang, Q. (2016). Subsea cable tracking by autonomous underwater vehicle with magnetic sensing guidance. Sensors (Switzerland), 16(8), 1–22. https://doi.org/10.3390/s1608133510.3390/s16081335501749927556465 Search in Google Scholar

Yao, X., Yang, G., & Peng, Y. (2017). Nonlinear Reduced-Order Observer-Based Predictive Control for Diving of an Autonomous Underwater Vehicle. Discrete Dynamics in Nature and Society, 2017, 1–15. https://doi.org/10.1155/2017/439457110.1155/2017/4394571 Search in Google Scholar

Yu, J., Sun, F., Xu, D., & Tan, M. (2016). Embedded Vision-Guided 3-D Tracking Control for Robotic Fish. IEEE Transactions on Industrial Electronics, 63(1), 355–363. https://doi.org/10.1109/TIE.2015.246655510.1109/TIE.2015.2466555 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo