Open Access

The impact of mechanical pretreatment on biogas production from waste materials of the chemical and brewing industries


Cite

Abraham, A., Mathew, A. K., Park, H., Choi, O., Sindhu, R., Parameswaran, B., Ashok, P., Jung H. P, Sang, B. I. (2020). Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Bioresource Technology, 301, 122725. https://doi.org/10.1016/j.biortech.2019.12272510.1016/j.biortech.2019.12272531958690Search in Google Scholar

Angelidaki, I., Ahring, B. K. (2000). Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Science and Technology, 41(3), 189–194. https://doi.org/10.2166/wst.2000.007110.2166/wst.2000.0071Search in Google Scholar

Bernat, K., Cydzik-Kwiatkowska, A., Zielińska, M., Wojnowska-Baryła, I., Wersocka, J. (2019a). Valorisation of the selectively collected organic fractions of municipal solid waste in anaerobic digestion. Biochemical Engineering Journal, 148, 87–96. https://doi.org/10.1016/j.bej.2019.05.00310.1016/j.bej.2019.05.003Search in Google Scholar

Bernat, K., Zielińska, M., Kulikowska, D., Cydzik-Kwiatkowska, A., Wojnowska-Baryła, I., Waszczyłko-Miłkowska, B., Piotrowicz, B. (2019b). The effect of the excess sludge pretreatment on biogas productivity. Technical Sciences, 1(22), 75–86. https://doi.org/10.31648/ts.434910.31648/ts.4349Search in Google Scholar

Bruni, E., Jensen, A. P., Angelidaki, I. (2010). Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresource Technology, 101(22), 8713–8717. https://doi.org/10.1016/j.biortech.2010.06.10810.1016/j.biortech.2010.06.10820638274Search in Google Scholar

Buranov, A. U., Mazza, G. (2008). Lignin in straw of herbaceous crops. Industrial Crops and Products, 28(3), 237–259. https://doi.org/10.1016/j.indcrop.2008.03.00810.1016/j.indcrop.2008.03.008Search in Google Scholar

De Bere, L. (2000). Anaerobic digestion of solid waste: state-of-the-art. Water Science and Technology, 41(3), 283–290. https://doi.org/10.2166/wst.2000.008210.2166/wst.2000.0082Search in Google Scholar

De la Rubia, M. A., Fernández-Cegrí, V., Raposo, F., Borja, R. (2011). Influence of particle size and chemical composition on the performance and kinetics of anaerobic digestion process of sunflower oil cake in batch mode. Biochemical Engineering Journal, 58, 162–167. https://doi.org/10.1016/j.bej.2011.09.01010.1016/j.bej.2011.09.010Search in Google Scholar

Dias, T., Fragoso, R., Duarte, E. (2014). Anaerobic co-digestion of dairy cattle manure and pear waste. Bioresource Technology, 164, 420–423. https://doi.org/10.1016/j.biortech.2014.04.11010.1016/j.biortech.2014.04.11024865319Search in Google Scholar

Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. (2009). Official Journal of the European Union, 5, 2009.Search in Google Scholar

Frigon, J. C., Mehta, P., Guiot, S. R. (2012). Impact of mechanical, chemical and enzymatic pre-treatments on the methane yield from the anaerobic digestion of switchgrass. Biomass and Bioenergy, 36, 1–11. https://doi.org/10.1016/j.biombioe.2011.02.01310.1016/j.biombioe.2011.02.013Search in Google Scholar

Gao, R., Yuan, X., Zhu, W., Wang, X., Chen, S., Cheng, X., Cui, Z. (2012). Methane yield through anaerobic digestion for various maize varieties in China. Bioresource Technology, 118, 611–614. https://doi.org/10.1016/j.biortech.2012.05.05110.1016/j.biortech.2012.05.051Search in Google Scholar

Hartmann, H., Angelidaki, I., Ahring, B. K. (2000). Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration. Water Science and Technology, 41(3), 145–153. https://doi.org/10.2166/wst.2000.006610.2166/wst.2000.0066Search in Google Scholar

Heerenklage, J., Stegmann, R. (2005). Analytical Methods for the Determination of the Biological Stability of Waste Samples. Proceedings Tenth International Waste Management and Landfill Symposium. Italy: S. Margherita di Pula, Cagliari.Search in Google Scholar

Karimi, K., Taherzadeh, M. J. (2016). A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresource Technology, 200, 1008–1018. https://doi.org/10.1016/j.biortech.2015.11.02210.1016/j.biortech.2015.11.022Search in Google Scholar

Kowalska, A. (2017). Charakterystyka roślin energetycznych jako potencjalnego surowca do produkcji biogazu. Eliksir, 1(5), 11–15.Search in Google Scholar

Kratky, L., Jirout, T. (2011). Biomass size reduction machines for enhancing biogas production. Chemical Engineering & Technology, 34(3), 391–399. https://doi.org/10.1002/ceat.20100035710.1002/ceat.201000357Search in Google Scholar

Krzyżaniak, M., Stolarski, M. J., Waliszewska, B., Szczukowski, S., Tworkowski, J., Załuski, D., Śnieg, M. (2014). Willow biomass as feedstock for an integrated multi-product biorefinery. Industrial Crops and Products, 58, 230–237. https://doi.org/10.1016/j.indcrop.2014.04.03310.1016/j.indcrop.2014.04.033Search in Google Scholar

Kumar, P., Barrett, D. M., Delwiche, M. J., Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48(8), 3713–3729. https://doi.org/10.1021/ie801542g10.1021/ie801542gSearch in Google Scholar

Ladisch, M. R., Lin, K. W., Voloch, M., Tsao, G. T. (1983). Process considerations in the enzymatic hydrolysis of biomass. Enzyme and Microbial Technology, 5(2), 82–102.10.1016/0141-0229(83)90042-XSearch in Google Scholar

Lechner, B. E., Papinutti, V. L. (2006). Production of lignocellulosic enzymes during growth and fruiting of the edible fungus Lentinus tigrinus on wheat straw. Process Biochemistry, 41(3), 594–598. https://doi.org/10.1016/j.procbio.2005.08.00410.1016/j.procbio.2005.08.004Search in Google Scholar

Li, F., Zhang, M., Guo, K., Hu, Z., Zhang, R., Feng, Y., Yi, X., Zou, W., Wang, L., Wu C., Tian, J. (2015). High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnology Journal, 13(4), 514–525. https://doi.org/10.1111/pbi.1227610.1111/pbi.1227625418842Search in Google Scholar

Monlau, F., Barakat, A., Trably, E., Dumas, C., Steyer, J. P., Carrère, H. (2013). Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment. Critical Reviews in Environmental Science and Technology, 43(3), 260–322. https://doi.org/10.1080/10643389.2011.60425810.1080/10643389.2011.604258Search in Google Scholar

Mshandete, A., Björnsson, L., Kivaisi, A. K., Rubindamayugi, M. S., Mattiasson, B. (2006). Effect of particle size on biogas yield from sisal fibre waste. Renewable Energy, 31(14), 2385–2392. https://doi.org/10.1016/j.renene.2005.10.01510.1016/j.renene.2005.10.015Search in Google Scholar

Nichols, C. E. (2004). Overview of anaerobic digestion technologies in Europe. BioCycle, 45(1), 47–47.Search in Google Scholar

Oslaj, M., Mursec, B., Vindis, P. (2010). Biogas production from maize hybrids. Biomass and Bioenergy, 34(11), 1538–1545. https://doi.org/10.1016/j.biombioe.2010.04.01610.1016/j.biombioe.2010.04.016Search in Google Scholar

Pakarinen, O. M., Tähti, H. P., Rintala, J. A. (2009). One-stage H2 and CH4 and two-stage H2+CH4 production from grass silage and from solid and liquid fractions of NaOH pre-treated grass silage. Biomass and Bioenergy, 33(10), 1419–1427. https://doi.org/10.1016/j.biombioe.2009.06.00610.1016/j.biombioe.2009.06.006Search in Google Scholar

Rasi, S., Veijanen, A., Rintala, J. (2007). Trace compounds of biogas from different biogas production plants. Energy, 32(8), 1375–1380. https://doi.org/10.1016/j.energy.2006.10.01810.1016/j.energy.2006.10.018Search in Google Scholar

Robertson, J. A., I’Anson, K. J., Treimo, J., Faulds, C. B., Brocklehurst, T. F., Eijsink, V. G., Waldron, K. W. (2010). Profiling brewers’ spent grain for composition and microbial ecology at the site of production. LWT-Food Science and Technology, 43(6), 890–896. https://doi.org/10.1016/j.lwt.2010.01.01910.1016/j.lwt.2010.01.019Search in Google Scholar

Saxena, R. C., Adhikari, D. K., Goyal, H. B. (2009). Biomass-based energy fuel through biochemical routes: a review. Renewable and Sustainable Energy Reviews, 13(1), 167–178. https://doi.org/10.1016/j.rser.2007.07.01110.1016/j.rser.2007.07.011Search in Google Scholar

Thomsen, S. T., Spliid, H., Østergård, H. (2014). Statistical prediction of biomethane potentials based on the composition of lignocellulosic biomass. Bioresource Technology, 154, 80–86. https://doi.org/10.1016/j.biortech.2013.12.02910.1016/j.biortech.2013.12.02924384313Search in Google Scholar

Tišma, M., Jurić, A., Bucić-Kojić, A., Panjičko, M., Planinić, M. (2018). Biovalorization of brewers’ spent grain for the production of laccase and polyphenols. Journal of the Institute of Brewing, 124(2), 182–186. https://doi.org/10.1002/jib.47910.1002/jib.479Search in Google Scholar

Tsapekos, P., Kougias, P. G., Angelidaki, I. (2015). Biogas production from ensiled meadow grass; effect of mechanical pretreatments and rapid determination of substrate biodegradability via physicochemical methods. Bioresource Technology, 182, 329–335. https://doi.org/10.1016/j.biortech.2015.02.02510.1016/j.biortech.2015.02.02525710572Search in Google Scholar

Wikberg, H., Grönqvist, S., Niemi, P., Mikkelson, A., Siika-Aho, M., Kanerva, H., Käsper, A., Tamminen, T. (2017). Hydrothermal treatment followed by enzymatic hydrolysis and hydrothermal carbonization as means to valorise agro-and forest-based biomass residues. Bioresource Technology, 235, 70–78. https://doi.org/10.1016/j.biortech.2017.03.09510.1016/j.biortech.2017.03.09528364635Search in Google Scholar

Yoshida, H., Tokumoto, H., Ishii, K., Ishii, R. (2009). Efficient, high-speed methane fermentation for sewage sludge using subcritical water hydrolysis as pretreatment. Bioresource Technology, 100(12), 2933–2939. https://doi.org/10.1016/j.biortech.2009.01.04710.1016/j.biortech.2009.01.04719254834Search in Google Scholar

Zhong, W., Zhang, Z., Qiao, W., Fu, P., Liu, M. (2011). Comparison of chemical and biological pretreatment of corn straw for biogas production by anaerobic digestion. Renewable Energy, 36(6), 1875–1879. https://doi.org/10.1016/j.renene.2010.12.02010.1016/j.renene.2010.12.020Search in Google Scholar

Zhu, J., Wan, C., Li, Y. (2010). Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresource Technology, 101(19), 7523–7528. https://doi.org/10.1016/j.biortech.2010.04.06010.1016/j.biortech.2010.04.06020494572Search in Google Scholar

Ziemiński, K., Kowalska-Wentel, M. (2017). Effect of different sugar beet pulp pretreatments on biogas production efficiency. Applied Biochemistry and Biotechnology, 181(3), 1211–1227. https://doi.org/10.1007/s12010-016-2279-110.1007/s12010-016-2279-1532586627766539Search in Google Scholar