1. bookVolume 117 (2020): Issue 1 (January 2020)
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
access type Open Access

The effects of ArUco marker velocity and size on motion capture detection and accuracy in the context of human body kinematics analysis

Published Online: 06 Nov 2020
Volume & Issue: Volume 117 (2020) - Issue 1 (January 2020)
Page range: -
Received: 15 Jan 2020
Accepted: 02 Nov 2020
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
Abstract

The research aim was to analyse the influence of velocity and size of markers on the accuracy of motion capture measurement utilising image processing with the use of OpenCV. On the basis of the obtained results, the usefulness of the applied measurement method in studying the kinematics of the human body while driving operating a wheelchair was determined. This article presents the test results for a low-budget motion capture measurement system for testing the kinematics of the human body in a single plane. The tested measuring system includes a standard activity camera Xiaomi Yi4K, expanded polystyrene markers with printed ArUco codes, and original software for marker position detection developed by the author. The analysis of the measurement method with regard to its applicability in biomechanical studies has highlighted several key factors: the number of measuring points, measurement accuracy expressed as a relative error and the limit velocity at which the marker trajectory is correctly represented. The article shows that the limit velocity of the marker is 2.2 m/s for 50x50 mm markers and 1.4 m/s for 30x30 mm markers. The number of measured points ranged from 233 to 2,457 depending on the marker velocity. The relative error did not exceed 5% for the marker velocities and thus provided a correct representation of its trajectory.

Keywords

Arnet, U., van Drongelen, S., Scheel-Sailer, A., van der Woude, L.H., Veeger, D.H. (2012). Shoulder load during synchronous handcycling and handrim wheelchair propulsion in persons with paraplegia. Journal of rehabilitation medicine, 44(3), 222–228.10.2340/16501977-092922367531Search in Google Scholar

Baran, K. (2018). Rozpoznawanie emocji za pomocą technologii: elektroencefalografia (EEG), motion capture i wirtualna rzeczywistość (VR). Prace doktorantów Wydziału Elektrotechniki i Informatyki Politechniki Lubelskiej, Wydawnictwo Politechniki Lubelskiej, Lublin 2018, 32–46.Search in Google Scholar

Boninger, M.L., Cooper, R.A., Shimada, S.D., Rudy T.E. (1998). Shoulder and elbow motion during two speeds of wheelchair propulsion: a description using a local coordinate system. Spinal cord, 36(6), 418–426.10.1038/sj.sc.31005889648199Search in Google Scholar

Carse, B., Meadows, B., Bowers, R., Rowe, P. (2013). Affordable clinical gait analysis: An assessment of the marker tracking accuracy of a new low-cost optical 3D motion analysis system. Physiotherapy, 99(4), 347–351.10.1016/j.physio.2013.03.00123747027Search in Google Scholar

Chow, J.W., Chae, W.S., Crawford, M.J. (2000). Kinematic analysis of shot-putting performed by wheelchair athletes of different medical classes. Journal of Sports Sciences, 18(5), 321–330.10.1080/02640410040238610855678Search in Google Scholar

Crespo-Ruiz, B.M., Del Ama-Espinosa, A.J., Gil-Agudo, Á.M. (2011). Relation between kinematic analysis of wheelchair propulsion and wheelchair functional basketball classification. Adapted physical activity quarterly, 28(2), 157–172.10.1123/apaq.28.2.15721757787Search in Google Scholar

Głodzik, J., Krężałek, P., Strój, E., Przybytek, M., Szczygieł, E., Hładki, W. (2017). Ocena zaburzeń chodu z wykorzystaniem analizy komputerowej BTS-SMART. Ostry Dyżur, 10(4).Search in Google Scholar

Hachaj, T., Ogiela, M.R., Koptyra, K. (2018). Human actions recognition from motion capture recordings using signal resampling and pattern recognition methods. Annals of Operations Research, 265(2), 223–239.10.1007/s10479-016-2308-zSearch in Google Scholar

Hughes, C.J., Weimar, W.H., Sheth, P.N., Brubaker, C.E. (1992). Biomechanics of wheelchair propulsion as a function of seat position and user-to-chair interface. Archives of physical medicine and rehabilitation, 73(3), 263–269.Search in Google Scholar

Jóźwiak, P., Jaśkowski, B.M., Jóźwiak, A., Kosek, W., Knapkiewicz, P., Jakowski, J.M. (2014). Kinematyczna ocena ruchu konia. Med. Weter, 70(1), 30–35.Search in Google Scholar

Kamiński, M., Kopniak, P., Zyla, K. (2014). Zdalne sterowanie ramieniem robota z wykorzystaniem inercyjnych czujników rejestracji ruchu. Logistyka, 6, 5168–5177.Search in Google Scholar

Kania, E., Głowacka-Kwiecień, A., Jochymczyk, K., Jureczko, P. (2008). Badania doświadczalne chodu dzieci zdrowych. Aktualne Problemy Biomechaniki, 2.Search in Google Scholar

Kopniak, P. (2012). Rejestracja ruchu za pomocą urządzenia Microsoft Kinect. Pomiary Automatyka Kontrola, 58(11), 1016–1018.Search in Google Scholar

Kopniak, P. (2014). Pomiary kątów ugięcia kończyny w stawie z wykorzystaniem inercyjnego systemu Motion Capture. Pomiary Automatyka Kontrola, 60(8).Search in Google Scholar

Skublewska-Paszkowska, M., Łukasik, E., Smołka, J. (2015). Wykorzystanie systemu akwizycji ruchu do badania kierowców. Logistyka, 4, 5678–5684.Search in Google Scholar

Skublewska-Paszkowska, M., Montusiewicz, J., Łukasik, E., Pszczoła-Pasierbiewicz, I., Baran, K.R., Smołka, J., Pueo, B. (2016). Motion capture as a modern technology for analysing ergometer rowing. Advances in Science and Technology Research Journal, 10(29).10.12913/22998624/61941Search in Google Scholar

Vanlandewijck, Y., Theisen, D., Daly, D. (2001). Wheelchair propulsion biomechanics. Sports medicine, 31(5), 339–367.10.2165/00007256-200131050-0000511347685Search in Google Scholar

Wu, G., van der Helm, F.C.T, Veeger, H.E.J., Makhsous, M., Van Roy, P., Anglin, C., Nagels, J., Karduna, A.R., McQuade, K., Wang, X., Werner, F.W., Buchholz, B. (2005). ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion–Part II: Shoulder, elbow, wrist and hand. Journal of Biomechanics, 38, 981–992.10.1016/j.jbiomech.2004.05.04215844264Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo