Open Access

Influence of sterilization and exposure to the Ringer’s solution on physicochemical properties of nitrocarburized 316 LVM steel

, ,  and   
Jan 27, 2025

Cite
Download Cover

Aneja S., Taylor J.S., Soldes O., Dermatitis in patients undergoing the Nuss procedurefor correction of pectus excavatum, Contact Dermatitis, 2011, 65, DOI: 10.1111/j.1600-0536.2011.01966.x. Search in Google Scholar

Baranowska J., Arnold B., Corrosion resistance of nitrided layers on austenitic steel, Surf. Coat. Technol., 2006, 22–23 (200), DOI: 10.1016/j.surfcoat.2005.11.099. Search in Google Scholar

Basiaga M., Jendruś R., Walke W., Paszenda Z., Kaczmarek M., Popczyk M., Influence of surface modification on properties of stainless steel used for implants, Arch. Metall. Mater., 2015, 60, DOI: 10.1515/AMM-2015-0473. Search in Google Scholar

Basiaga M., Walke W., Staszuk M., Kajzer W., Kajzer A., Nowińska K., Influence of ALD process parameters on the physical and chemical properties of the surface of vascular stents, Arch. Civ. Mech. Eng., 2017, 17, https://doi.org/10.1016/j.acme.2016.08.001 Search in Google Scholar

Borowski T., Adamczyk-cieślak B., Brojanowska A., Kulikowski K., Wierzchoń T., Surface modification of austenitic steel by various glow-discharge nitriding methods, Mater. Sci., 2015, 21 (3), DOI: 10.5755/J01.MS.21.3.7404. Search in Google Scholar

Byrski A., Kopernik M., Major Ł., Kasperkiewicz K., Dyner M., Lackner J.M., Lumenta D., Major R., Characterization of biomaterials with reference to biocompatibility dedicated for patient-specific finger implants, Acta Bioeng. Biomech., 2023, 25 (1), DOI: 10.37190/ABB-02156-2022-02. Search in Google Scholar

Casamassima M.G.S., Goldstein S.D., Salazar J.H., Mciltrot K.H., Abdullah F., Colombani P.M., Peri-operative strategies and technical modifications to the Nuss repair for pectus excavatum in pediatric patients: A large volume, single institution experience, J. Pediatr. Surg., 2014, 49 (4), DOI: 10.1016/j.jpedsurg.2013.11.058. Search in Google Scholar

Cheng Z., Li C.X., Dong H., Bell T., Low temperature plasma nitrocarburising of AISI 316 austenitic stainless steel, Surf. Coat. Technol., 2005, 2–3 (191), DOI: 10.1016/j.surfcoat.2004.03.004. Search in Google Scholar

De sousa R.R.M., De araújo F.O., Gontijo L.C., Da Costa J.A.P., Alves C.Jr., Cathodic cage plasma nitriding (CCPN) of austenitic stainless steel (AISI 316): Influence of the different ratios of the (N2/H2) on the nitrided layers properties, Vacuum, 2012, (17) 2, DOI: 10.1590/S1516-14392013005000197. Search in Google Scholar

Goldsztajn K., Godzierz M., Hercog A., Władowski M., Jaworska J., Jelonek K., Woźniak W., Kajzer A., Orłowska A., Szewczenko J., Properties of biodegradable polymer coatings with hydroxyapatite on a titanium alloy substrate, Acta Bioeng. Biomech., 2024, 26 (1), DOI: 10.37190/ABB-02351-2023-03. Search in Google Scholar

Górecki A., Babiak I., Leczenie zakażeń w obrębie narządu ruchu. Antybiotyki w profilaktyce i leczeniu zakażeń, Wydawnictwo Lekarskie PZWL, 2001. Search in Google Scholar

Gregory D., Michael J., Goretsky T., Maripaz M., Kelly R.E. Jr., Nuss D., When it is not an infection: metal allergy after the Nuss procedure for repair of pectus excavatum, J. Pediatr. Surg., 2007, 42 (1), DOI: 10.1016/j.jpedsurg. 2006.09.056. Search in Google Scholar

Haïdopoulos M., Turgeon S., Sarra-bournet C., Laroche G., Mantovani D., Development of an optimized electrochemical process for subsequent coating of 316 stainless steel for stent applications, J. Mater. Sci. Mater. Med., 2006, 17, DOI: 10.1007/s10856-006-9228-4. Search in Google Scholar

Hryniewicz T., Rokicki R., Rokosz K., Surface characterization of AISI 316L biomaterials obtained by electropolishing in a magnetic field, Surf. Coat. Technol., 2008, (202) 9, DOI: 10.1016/j.surfcoat.2007.07.067. Search in Google Scholar

ISO 10993-5 – Biological evaluation of medical devices. Part 5: Tests for in vitro cytotoxicity. Search in Google Scholar

ISO 5832-1: Implants for surgery – Metallic materials. Part 1: Wrought stainless steel. Search in Google Scholar

Afifah J.Z., Azmi F., Basak A., Ghani J., Kasim M.S., Alias R., Tribological and corrosion behaviour of medical grade 316LVM steel by low temperature hybrid gaseous nitriding and carburizing, Tribol. Int., 2023, 190, DOI: 10.1016/j.triboint.2023.109026. Search in Google Scholar

Kajzer A., Kajzer W., Dzielicki J., Matejczyk D., The study of physicochemical properties of stabilizing plates removed from the body after treatment of pectus excavatum, Acta Bioeng. Biomech., 2015, 2, DOI: 10.5277/ABB-00140-2014-02. Search in Google Scholar

Kajzer A., Rabij K., Basiaga M., Nowińska K., Kaczmarek M., Borowski T., Wierzchoń T., Influence of sterilization and exposure to the Ringer’s solution on mechanical and physicochemical properties of nitrocarburized 316 LVM steel, Arch. Metall. Mater., 2018, (63) 3, DOI: 10.24425/123799. Search in Google Scholar

Kajzer W., Kajzer A., Grygiel-pradelok M., Ziębowicz A., Ziębowicz B., Evaluation of physicochemical properties of TiO2 layer on AISI 316 LVM stainless steel intented for urology, Springer International Publishing, 2016, DOI: 10.1007/978-3-319-39904-1_34. Search in Google Scholar

Kelly R.E., Goretsky M.J., Obermeyer R., Kuhn M.A., Redlinger R., Haney T.S., Moskowitz A., Nuss D., Twenty-one years of experience with minimally invasive repair of pectus excavatum by the Nuss procedure in 1215 patients, Ann. Surg., 2010, 163 (3), DOI: 10.1016/j.jtcvs.2020.11.154. Search in Google Scholar

Li X.Y., Thaiwatthana S., Dong H., Bell T., Thermal stability of carbon S phase in 316 stainless steel, Surf. Eng., 2002, 18, DOI: 10.1179/0267084022250062. Search in Google Scholar

Liu Y., Zhu D., Jeremy D.P., Gilbert L., Fretting Initiated Crevice Corrosion of 316LVM Stainless Steel in Physiological Phosphate Buffered Saline, Acta Biomater., 2019, (97) 1, DOI: 10.1016/j.actbio.2019.07.051. Search in Google Scholar

Martínez O.L., Pérez F.J., Gómez C., The effect of nitrogen ion implantation on the corrosion behaviour of stainless steels in chloride media, Surf. Coat. Technol., 2005, (200) 5–6, DOI: 10.1016/j.surfcoat.2005.08.034. Search in Google Scholar

Niua W., Lillarda R.S., Lib Z., Ernst F., Properties of the Passive Film Formed on Interstitially Hardened AISI 316L Stainless Steel, Electrochim. Acta., 2015, 176 (4), 410–419. Search in Google Scholar

Orłowska A., Szewczenko J., Kajzer W., Goldsztajn K., Basiaga M., Study of the effect of anodic oxidation on the corrosion properties of the Ti6Al4V implant produced from SLM, J. Funct. Biomater., 2023, 14 (4), DOI: 10.3390/jfb14040191. Search in Google Scholar

Park H.J., Lee S.Y., Lee C.S., Complications associated with the Nuss procedure: analysis of risk factors and suggested measures for prevention of complications, J. Pediatr. Surg., 2004, 39 (3), DOI: 10.1016/j.jpedsurg.2003.11.012. Search in Google Scholar

PN-EN ISO 10993-15. Biological evaluation of medical devices. Part 15: Identification and quantification of degradation products from metals and alloys. Search in Google Scholar

Pokrowiecki R., Tyski S., Zaleska M., Problematyka zakażeń okołowszczepowych, Post. Mikrobiol., 2014, 53 (2), 123–134. Search in Google Scholar

Rosato E., Giovannetti A., Rossi C., Menghi G., Pisarri S., Salsano F., Recurrentinfections in patients with nickel allergic hypersensitivity, J. Biol. Regul. Homeost Agents, 2009, 23 (3), 173–180. Search in Google Scholar

Schalock P.C., Menné T., Johansen J.D., Hypersensitivity reactions to metallic implants − diagnostic algorithm and suggested patch test series for clinical use, Contact Dermatitis, 2011, 66, DOI: 10.1111/j.1600-0536.2011.01971.x. Search in Google Scholar

Shah B., Cohee A., Deyerle A., Kelly C.S., Frantz F., Kelly R.E., Kuhn M.A., Lombardo M., Obermeyer R., Goretsky M.J., High rates of metal allergy amongst Nuss procedure patients dictate broader pre-operative testing, J. Pediatr. Surg., 2014, (49) 3, DOI: 10.1016/j.jpedsurg.2013.07.014. Search in Google Scholar

Shen L., Wang L., Xu J.J., Plasma nitriding of AISI 304 austenitic stainless steel assisted with hollow cathode effect, Surf. Coat. Technol., 2013, (204) 20, DOI: 10.1016/j.surfcoat. 2010.03.018. Search in Google Scholar

Shin S., Goretsky M.J., Kelly R.E. JR, Gustin T., Nuss D., Infectious complications after the Nuss repair in a series of 863 patients, Pediatr. Surg., 2007, 42 (1), DOI: 10.1016/j.jpedsurg.2006.09.057. Search in Google Scholar

Wanga X., Zhaoa L., Dinga M.H, Zhenga H., Zhanga H.S., Zhanga B., Lia X.Q., Wua G.Y., Surface modification of biomedical AISI 316L stainless steel withzirconium carbonitride coatings, Appl. Surf. Sci., 2015, 340, http://dx.doi.org/10.1016/j.apsusc.2015.02.191 Search in Google Scholar

Welch K.J., Satisfactory surgical correction of pectus excavatum deformity in childhood, J. Thorac. Surg., 1958, 36, 697–713. Search in Google Scholar

Wielowiejska G.A., Wiśniewski T., Rubach R., Fretting corrosion studies of materials used for elements of hip joint endoprostheses, Tribologia, 2018, 5, 143–151. Search in Google Scholar

Wu P.C., Knauer E.M., Mcgowan G.E., Hight D.W., Repair of pectus excavatum deformities in children: a new perspective of treatment using minimal access surgical technique, Arch. Surg., 2016, 136 (4), 419–424. Search in Google Scholar

Ziębowicz A., Sambok-kiełbowicz A., Walke W., Mzyk A., Kosiel K., Kubacki J., Bączkowski B., Pawlyta M., Ziębowicz B., Evaluation of Bacterial Adhesion to the ZrO2 Atomic Layer Deposited on the Surface of Cobalt-Chromium Dental Alloy Produced by DMLS Method, Materials, 2021, 14 (5), DOI: 10.3390/ma14051079. Search in Google Scholar