This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Adolfsson L., Post-traumatic stiff elbow, EFORT Open Rev, 2018, 3 (5), 210–216, DOI: 10.1302/2058-5241.3.170062.Search in Google Scholar
Badia A., Stennett C., Sports-related injuries of the elbow, J. Hand Ther., 2006, 19 (2), 206–226, DOI: 10.1197/j.jht. 2006.02.006.Search in Google Scholar
Beck C.M., Gluck M.J., Zhang Y., Mcgough J.D., Reizner W., Rubin T.A., Hausman M.R., Outcomes of Arthroscopic Elbow Contracture Release: Improvement for Severe Prosupi-nation and Flexion Contracture, Arthroscopy, 2022, 38 (2), 315–322, DOI: 10.1016/j.arthro.2021.07.020.Search in Google Scholar
Buchler P., Ramaniraka N.A., Rakotomanana L.R., Iannotti J.P., Farron A., A finite element model of the shoulder application to the comparison of normal and osteoarthritic joints, Clin. Biomech., 2002, (9–10), 630–639, DOI: 10.1016/S0268-0033(02)00106-7.Search in Google Scholar
Callaway G.H., Field L.D., Deng X.H., Torzilli P.A., Warren R.F., Biomechanical evaluation of the medial collateral ligament of the elbow, J. Bone and Joint Surg. Am., 1997, 79 (8), 1223–1231.Search in Google Scholar
Camp C.L., Fu M., Jahandar H., Desai V.S., Sinatro A.M., Altchek D.W., Dines J.S., The lateral collateral ligament complex of the elbow quantitative anatomic analysis of the lateral ulnar collateral, radial collateral, and annular ligaments, J. Shoulder Elbow Surg., 2019, 28 (4), 665–670, DOI: 10.1016/j.jse.2018.09.019.Search in Google Scholar
Carlock K.D., Bianco I.R., Kugelman D.N., Konda S.R., Egol K.A., Risk Factors for Elbow Joint Contracture After Surgical Repair of Traumatic Elbow Fracture, J. Am. Acad. Orthop. Surg., 2021, 29 (4), e178–187, DOI: 10.5435/jaaos-d-18-00801.Search in Google Scholar
Charalambous C.P., Morrey B.F., Posttraumatic elbow stiffness, J. Bone Joint Surg. Am., 2012, 9, 1428–1437, DOI: 10.2106/JBJS.K.00711.Search in Google Scholar
Cikes A., Jolles B.M., Farron A., Open Elbow Arthrolysis for Posttraumatic Elbow Stiffness, J. Orthop. Traumatol., 2006, 20 (6), 405–409, DOI: 10.1097/00005131-200607000-00007.Search in Google Scholar
Cohen M.S., Schimmel D., Hastings H. 2nd., Muehleman C., Structural and biochemical evaluation of the elbow capsule after trauma, J. Shoulder Elb. Surg., 2007, 16 (4), 484–490, DOI: 10.1016/j.jse.2006.06.018.Search in Google Scholar
Debski R.E., Weiss J.A., Newman W.J., Moore S.M., Mcmahon P.J., Stress and strain in the anterior band of the inferior glenohumeral ligament during a simulated clinical examination, J. Shoulder Elb. Surg., 2005, 14 (1 Suppl. S), 24S–31S, DOI: 10.1016/j.jse.2004.10.003.Search in Google Scholar
Dunham C.L., Castile R.M., Chamberlain A.M., Lake S.P., The role of periar-ticular soft tissues in persistent motion loss in a rat model of posttrau-matic elbow contracture, J. Bone Joint Surg. Am., 2019, 101, e17(1–7), DOI: 10.2106/JBJS.18.00246.Search in Google Scholar
Floris S., Olsen B.S., Dalstra M., Slzrjbierg J.O., Sneppen O., The medial collateral ligament of the elbow joint: Anatomy and kinematics, J. Shoulder Elbow Surg., 1998, 7 (4), 345–351, DOI: 10.1016/S1058-2746(98)90021-0.Search in Google Scholar
Gao Y., Gao B., Zhu H., Yu Q., Xie F., Chen C., Li Q., Adipose-derived stem cells embedded in platelet-rich plasma scaffolds improve the texture of skin grafts in a rat full-thickness wound model, Burns, 2020, 46 (2), 377–385, DOI: 10.1016/j.burns.2019.07. 041.Search in Google Scholar
Hedenstierna S., Halldin P., Brolin K., Evaluation of a combination of continuum and truss finite elements in a model of passive and active muscle tissue, Comput. Method Biomec., 2006, 11 (6), 627–639, DOI: 10.1080/17474230802312516.Search in Google Scholar
Hildebrand K.A., Zhang M., Germscheid N.M., Wang C, Hart D.A., Cellular, matrix, and growth factor components of the articular capsule are modified early in the process of posttraumatic contracture formation in a rabbit model, Acta Orthop., 2008, 79 (1), 116–125, DOI: 10.1080/17453670710014860.Search in Google Scholar
Hildebrand K.A., Zhang M., Van snellenberg W., King G.J., Hart D.A., Myofibroblast numbers are elevated in human elbow capsules after trauma, Clin. Orthop., 2004, 419, 189–197, DOI: 10.1097/00003086-200402000-00031.Search in Google Scholar
Hinz B., Phan S.H., Thannickal V.J., Galli A., Bochaton-Piallat M., Gabbiani G., The Myofibroblast: One Function, Multiple Origins, Am. J. Pathol., 2007, 170 (6), 1807–1816, DOI: 10.2353/ajpath.2007.070112.Search in Google Scholar
Jupiter J.B., O’driscoll S.W., Cohen M.S., The assessment and management of the stiff elbow, Instr. Course Lect., 2003, 52, 93–111.Search in Google Scholar
Kahmann S.L., Sas A., Große hokamp N., Van lenthe G.H., Müller L.P., Wegmann K., A combined experimental and finite element analysis of the human elbow under loads of daily living, J. Biomech., 2023, 158, 111766, DOI: 10.1016/j.jbiomech.2023.111766.Search in Google Scholar
Kodde L.F., Van rijn J., Van den bekerom M.P., Eygendaal D., Surgical treatment of post-traumatic elbow stiffness: a systematic review, J. Shoulder Elb. Surg., 2013, 22 (4), 574–580, DOI: 10.1016/j.jse.2012.11.010.Search in Google Scholar
Kodek T., Munih M., An analysis of static and dynamic joint torques in elbow flexion-extension movements, Simul. Model Pract. Th., 2003, 11 (3–4), 297–311, DOI: 10.1016/S1569-190X(03)00063-7.Search in Google Scholar
Kumara V., Mishraa R.K., Krishnapillai S., Study of pilot’s comfortness in the cockpit seat of a flight simulator, Int. J. Ind. Ergonom., 2019, 71, 1–7, DOI: 10.1016/j.ergon. 2019.02.004.Search in Google Scholar
Mansat P., Morrey B.F., The column procedure: a limited lateral approach for extrinsic contracture of the elbow, J. Bone Joint Surg. Am., 1998, 80 (11), 1603–1615.Search in Google Scholar
Monika P., Waiker P.V., Chandraprabha M.N., Rangarajan A., Chidambara K.N., Myofibroblast Progeny in Wound Biology and Wound Healing Studies, Wound Repair Regen., 2021, 29 (4), 531–547, DOI: 10.1111/wrr.12937.Search in Google Scholar
Monument M.J., Hart D.A., Salo P.T., Hildebrand K.A., Befus A.D., Posttraumatic elbow contractures: targeting neuroinflammatory fibrogenic mechanisms, J. Orthop. Sci., 2013, 18 (6), 869–877, DOI: 10.1007/s00776-013-0447-5.Search in Google Scholar
O’driscoll S.W., Bell D.F., Morrey B.F., Posterolateral rotatory instability of the elbow, J. Bone Joint Surg. Am., 1991, 73 (3), 440–446.Search in Google Scholar
Rodriguez-martin J., Pretell-mazzini J., Andres-Esteban E.M., Larrainzar-garijo R., Outcomes after terrible triads of the elbow treated with the current surgical protocols. A review, International Orthopaedics, 2013, 851–860, DOI: 10.1007/s00264-010-1024-6.Search in Google Scholar
Shukla D.R., Golan E., Weiser M.C., Nasser P., Choueka J., Hausman M., The posterior bundle’s effect on posteromedial elbow instability after a transverse coronoid fracture: A biomechanical study, J. Hand Surg. Am., 2018, 43 (4), 381–388, DOI: 10.1016/j.jhsa. 2017.09.018.Search in Google Scholar
Sung E.J., Chun M.H., Hong J.Y., Do K.H., Effects of a resting foot splint in early brain injury patients, Ann. Rehabil. Med., 2016, 40 (1), 135–141, DOI: 10.5535/arm.2016.40.1. 135.Search in Google Scholar
Takatori K., Hashizume H., Wake H., Inoue H., Nagayama N., Analysis of stress distribution in the humerora-dial joint, J. Orthop. Sci., 2002, 7 (6), 650–657, DOI: 10.1007/s007760200116.Search in Google Scholar
Tan J., Wu J., Current progress in understanding the molecular pathogenesis of burn scar contracture, Burns Trauma, 2017, 5, 14, DOI: 10.1186/s41038-017-0080-1.Search in Google Scholar
Trudel G., Uhthoff H.K., Brown M., Extent and direction of joint motion limitation after prolonged immobility: An experimental study in the rat, Arch. Phys. Med., 1999, 80 (12), 1542–1547, DOI: 10.1016/S0003-9993(99)90328-3.Search in Google Scholar
Van de Water L., Varney S., Tomasek J.J., Mechanoregulation of the Myofibroblast in Wound Contraction, Scarring, and Fibrosis: Opportunities for New Therapeutic Intervention, Adv. Wound Care, 2013, 2 (4), 122–141, DOI: 10.1089/wound.2012.0393.Search in Google Scholar
Veltman E.S., Doornberg J.N., Eygendaal D., Van den Bekerom M.P., Static progressive versus dynamic splinting for posttraumatic elbow stiffness: a systematic review of 232 patients, Arch. Orthop. Trauma Surg., 2015, 135, 613–617, DOI: 10.1007/s00402-015-2199-5.Search in Google Scholar
Wahl E.P., Lampley A.J., Chen A,. Adams S.B., Nettles D.L., Richard M.J., Inflammatory cytokines and matrix metalloproteinases in the synovial fluid after intra-articular elbow fracture, J. Shoulder Elb. Surg., 2020, 29 (4), 736–742, DOI: 10.1016/j.jse. 2019.09.024.Search in Google Scholar
Wang F., Wang H., Li M., Jia S., Wang J., Zhang J., Fan Y., The role of the joint capsule in the stability of the elbow joint, Med. Biol. Eng. Comput., 2023, 61, 1439–1448, DOI: 10.1007/s11517-023-02774-6.Search in Google Scholar
Zhang D., Nazarian A., Rodriguez E.K., Post-traumatic elbow stiffness: Pathogenesis and current treatments, Shoulder Elbow, 2020, 12 (1), 38–45, DOI: 10.1177/1758573218793903.Search in Google Scholar
Zhou Y., Zhang Q.B., Zhong H.Z., Liu Y., Li J., Lv H., Jing J.H., Rabbit Model of Extending Knee Joint Contracture: Progression of Joint Motion Restriction and Subsequent Joint Capsule Changes after Immobilization, J. Knee Surg., 2020, 33 (01), 015–021, DOI: 10.1055/s-0038-1676502.Search in Google Scholar
Zhuang Z., Yu D., Chen Z., Liu D., Yuan G., Yirong N., Sun L., Liu Y., He R., Wang K., Curcumin Inhibits Joint Contracture through PTEN Demethylation and Targeting PI3K/Akt/mTOR Pathway in Myofibroblasts from Human Joint Capsule, Evid-Based Compl. Alt, 2019, 2019, 1–12, DOI: 10.1155/2019/4301238.Search in Google Scholar