Open Access

Analyzing ligament prestrain in a multibody model of an ankle joint with random sampling

  
Feb 08, 2024

Cite
Download Cover

Borucka A., Ciszkiewicz A., A Planar Model of an Ankle Joint with Optimized Material Parameters and Hertzian Contact Pairs, Materials, 2019, 12 (16), 2621, DOI: 10.3390/ma12162621. Search in Google Scholar

Brockett C.L., Chapman G.J., Biomechanics of the ankle, Orthopaedics and Trauma, 2016, 30 (3), 232–238, DOI: 10.1016/j.mporth.2016.04.015. Search in Google Scholar

Button K.D., Wei F., Meyer E.G., Haut R.C., Specimen- Specific Computational Models of Ankle Sprains Produced in a Laboratory Setting, J. Biomech. Eng., 2013, 135 (4), 041001, DOI: 10.1115/1.4023521. Search in Google Scholar

Ciszkiewicz A., Analyzing Uncertainty of an Ankle Joint Model with Genetic Algorithm, Materials, 2020, 13 (5), 1175, DOI: 10.3390/ma13051175. Search in Google Scholar

Ciszkiewicz A., Arbitrary Prestrain Values for Ligaments Cause Numerical Issues in a Multibody Model of an Ankle Joint, Symmetry, 2022, 14 (2), 261, DOI: 10.3390/sym14020261. Search in Google Scholar

Forlani M., Sancisi N., Parenti-Castelli V., A Three-Dimensional Ankle Kinetostatic Model to Simulate Loaded and Unloaded Joint Motion, J. Biomech. Eng., 2015, 137 (6), 061005, DOI: 10.1115/1.4029978. Search in Google Scholar

Funk J.R., Hall G.W., Crandall J.R., Pilkey W.D., Linear and Quasi-Linear Viscoelastic Characterization of Ankle Ligaments, J. Biomech. Eng., 2000, 122 (1), 15–22. Search in Google Scholar

Iaquinto J.M., Wayne J.S., Computational Model of the Lower Leg and Foot/Ankle Complex: Application to Arch Stability, J. Biomech. Eng., 2010, 132 (2), 021009, DOI: 10.1115/1.4000939. Search in Google Scholar

Klekiel T., BĘdziŃski R., Finite Element Analysis Of Large Deformation Of Articular Cartilage In Upper Ankle Joint Of Occupant In Military Vehicles During Explosion, Arch. Metall. Mater., 2015, 60 (3), 2115–21, DOI: 10.1515/amm-2015-0356. Search in Google Scholar

Liacouras P.C., Wayne J.S., Computational Modeling to Predict Mechanical Function of Joints: Application to the Lower Leg With Simulation of Two Cadaver Studies, J. Biomech. Eng., 2007, 129 (6), 811–817, DOI: 10.1115/1.2800763. Search in Google Scholar

Maas S.A., Erdemir A., Halloran J.P., Weiss J.A., A general framework for application of prestrain to computational models of biological materials, J. Mech. Behav. Biomed., 2016, 61, 499–510, DOI: 10.1016/j.jmbbm.2016.04.012. Search in Google Scholar

Machado M., Flores P., Claro J.C.P., Ambrósio J., Silva M., Completo A., Lankarani H.M., Development of a planar multibody model of the human knee joint, Nonlinear Dyn., 2010, 60 (3), 459–478, DOI: 10.1007/s11071-009-9608-7. Search in Google Scholar

Ozeki S., Yasuda K., Kaneda K., Yamakoshi K., Yamanoi T., Simultaneous Strain Measurement With Determination of a Zero Strain Reference for the Medial and Lateral Ligaments of the Ankle, Foot Ankle Int., 2002, 23 (9), 825–832, DOI: 10.1177/107110070202300909. Search in Google Scholar

Rodrigues da Silva M., Marques F., Tavares da Silva M., Flores P., A new skeletal model for the ankle joint complex, Multibody Syst. Dyn., 2024, 60 (1), 27–63, DOI: 10.1007/s11044-023-09955-z. Search in Google Scholar

Roupa I., Da Silva M.R., Marques F., Gonçalves S.B., Flores P., Da Silva M.T., On the Modeling of Biomechanical Systems for Human Movement Analysis: A Narrative Review, Arch. Computat. Methods Eng., 2022, 29 (7), 4915–4958, DOI: 10.1007/s11831-022-09757-0. Search in Google Scholar

Silva M., Freitas B., Andrade R., Carvalho Ó., Renjewski D., Flores P., Espregueira-Mendes J., Current Perspectives on the Biomechanical Modelling of the Human Lower Limb: A Systematic Review, Arch. Computat. Methods Eng., 2021, 28 (2), 601–636, DOI: 10.1007/s11831-019-09393-1. Search in Google Scholar

Sybilski K., Mazurkiewicz Ł., JurkojĆ J., Michnik R., MaŁachowski J., Evaluation of the effect of muscle forces implementation on the behavior of a dummy during a headon collision, Acta Bioeng. Biomech., 2021, 23 (4), 137–147 DOI: 10.37190/ABB-01976-2021-04. Search in Google Scholar

Takabayashi T., Edama M., Inai T., Tokunaga Y., Kubo M., Influence of sex and knee joint rotation on patellofemoral joint stress, Acta Bioeng. Biomech., 2022, 24 (3), 161–168, DOI: 10.37190/ABB-02115-2022-03. Search in Google Scholar

Takabayashi T., Mutsuaki E., Takuma I., Masayoshi K., Effect of change in patellofemoral joint contact area by the decrease in vastus medialis muscle activation on joint stress, Acta Bioeng. Biomech., 2023, 25 (2), 41–47, DOI: 10.37190/ABB-02234-2023-02. Search in Google Scholar

Van Der Walt S., Colbert S.C., Varoquaux G., The NumPy Array: A Structure for Efficient Numerical Computation, Comput. Sci. Eng., 2011, 13 (2), 22–30, DOI: 10.1109/MCSE.2011.37. Search in Google Scholar

Watanabe R., Mishima H., Takehashi H., Wada H., Totsuka S., Nishino T., Yamazaki M., Hyodo K., Stress analysis of total hip arthroplasty with a fully hydroxyapatite- coated stem: comparing thermoelastic stress analysis and CT-based finite element analysis, Acta Bioeng. Biomech., 2022, 24 (2), 47–54, DOI: 10.37190/ABB-01994-2021-01. Search in Google Scholar

Wei F., Braman J.E., Weaver B.T., Haut R.C., Determination of dynamic ankle ligament strains from a computational model driven by motion analysis based kinematic data, Journal of Biomechanics, 2011, 44 (15), 2636–41, DOI: 10.1016/j.jbiomech.2011.08.010. Search in Google Scholar

Wei F., Hunley S.C., Powell J.W., Haut R.C., Development and Validation of a Computational Model to Study the Effect of Foot Constraint on Ankle Injury due to External Rotation, Ann. Biomed. Eng., 2011, 39 (2), 756–65, DOI: 10.1007/s10439-010-0234-9. Search in Google Scholar