1. bookVolume 32 (2022): Issue 3 (September 2022)
    Recent Advances in Modelling, Analysis and Implementation of Cyber-Physical Systems (Special section, pp. 345-413), Remigiusz Wiśniewski, Luis Gomes and Shaohua Wan (Eds.)
Journal Details
License
Format
Journal
eISSN
2083-8492
First Published
05 Apr 2007
Publication timeframe
4 times per year
Languages
English
Open Access

A Single Image Deblurring Approach Based on a Fractional Order Dark Channel Prior

Published Online: 08 Oct 2022
Volume & Issue: Volume 32 (2022) - Issue 3 (September 2022) - Recent Advances in Modelling, Analysis and Implementation of Cyber-Physical Systems (Special section, pp. 345-413), Remigiusz Wiśniewski, Luis Gomes and Shaohua Wan (Eds.)
Page range: 441 - 454
Received: 03 Oct 2021
Accepted: 05 Mar 2022
Journal Details
License
Format
Journal
eISSN
2083-8492
First Published
05 Apr 2007
Publication timeframe
4 times per year
Languages
English

An, S., Roh, H. and Kang, M. (2020). Long-term residual blending network for blur invariant single image blind deblurring, arXiv: 2007.04543. Search in Google Scholar

Cho, S. and Lee, S. (2009). Fast motion deblurring, ACM SIGGRAPH Asia 28(5): 1–8.10.1145/1618452.1618491 Search in Google Scholar

Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T. and Freeman, W.T. (2006). Removing camera shake from a single photograph, ACM Transactions on Graphics 25(3): 787–794.10.1145/1141911.1141956 Search in Google Scholar

Fuhai, C., Rongrong, J., Chengpeng, D., Xiaoshuai, S., Chia-Wen, L., Jiayi, J., Baochang, Z., Feiyue, H. and Liujuan, C. (2019). Semantic-aware image deblurring, arXiv: 1910.03853. Search in Google Scholar

Gao, D., Liu, J., Wu, R., Cheng, D., Fan, X. and Tang, X. (2019). Utilizing relevant RGB-D data to help recognize RGB images in the target domain, International Journal of Applied Mathematics and Computer Science 29(3): 611–621, DOI: 10.2478/amcs-2019-0045.10.2478/amcs-2019-0045 Search in Google Scholar

Gong, D., Yang, J., Liu, L., Zhang, Y., Reid, I., Shen, C., Van Den Hengel, A. and Shi, Q. (2017). From motion blur to motion flow: A deep learning solution for removing heterogeneous motion blur, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, pp. 3806–3815. Search in Google Scholar

He, K., Sun, J. and Tang, X. (2009). Single image haze removal using dark channel prior, 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, pp. 1956–1963. Search in Google Scholar

Jia, H. and Pu, Y. (2008). Fractional calculus method for enhancing digital image of bank slip, 2008 Congress on Image and Signal Processing, Sanya, China, Vol. 3, pp. 326–330. Search in Google Scholar

Joshi, N., Zitnick, C.L., Szeliski, R. and Kriegman, D.J. (2009). Image deblurring and denoising using color priors, 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, pp. 1550–1557. Search in Google Scholar

Kohler, R., Hirsch, M., Mohler, B., Scholkopf, B. and Harmeling, S. (2012). Recording and playback of camera shake: Benchmarking blind deconvolution with a real-world database, 2012 European Conference on Computer Vision, Florence, Italy, pp. 27–40. Search in Google Scholar

Kotera, J., Smidl, V. and Sroubek, F. (2017). Blind deconvolution with model discrepancies, IEEE Transactions on Image Processing 26(5): 2533–2544.10.1109/TIP.2017.267698128278468 Search in Google Scholar

Kotera, J., Šroubek, F. and Milanfar, P. (2013). Blind deconvolution using alternating maximum a posteriori estimation with heavy-tailed priors, in R. Wilson et al. (Eds), Computer Analysis of Images and Patterns, Springer, Berlin/Heidelberg, pp. 59–66.10.1007/978-3-642-40246-3_8 Search in Google Scholar

Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D. and Matas, J. (2018). DeblurGAN: Blind motion deblurring using conditional adversarial networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, pp. 8183–8192. Search in Google Scholar

Lai, W.-S., Ding, J.-J., Lin, Y.-Y. and Chuang, Y.-Y. (2015). Blur kernel estimation using normalized color-line priors, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, pp. 64–72. Search in Google Scholar

Lai, W.S., Huang, J.B., Hu, Z., Ahuja, N. and Yang, M.H. (2016). A comparative study for single image blind deblurring, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, pp. 1701–1709. Search in Google Scholar

Levin, A., Weiss, Y., Durand, F. and Freeman, W.T. (2009). Understanding and evaluating blind deconvolution algorithms, 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, pp. 1964–1971. Search in Google Scholar

Levin, A., Weiss, Y., Durand, F. and Freeman, W.T. (2011). Efficient marginal likelihood optimization in blind deconvolution, 2011 IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, USA, pp. 2657–2664. Search in Google Scholar

Li, B. and Xie, W. (2015). Adaptive fractional differential approach and its application to medical image enhancement, Computers & Electrical Engineering 45(C): 324–335.10.1016/j.compeleceng.2015.02.013 Search in Google Scholar

Li, B. and Xie, W. (2016). Image denoising and enhancement based on adaptive fractional calculus of small probability strategy, Neurocomputing 175(Part A): 704 – 714.10.1016/j.neucom.2015.10.115 Search in Google Scholar

Li, J. and Lu, W. (2016). Blind image motion deblurring with 0-regularized priors, Journal of Visual Communication & Image Representation 40(Part A): 14–23.10.1016/j.jvcir.2016.06.003 Search in Google Scholar

Li, P., Prieto, L., Mery, D. and Flynn, P.J. (2019). On low-resolution face recognition in the wild: Comparisons and new techniques, IEEE Transactions on Information Forensics and Security 14(8): 2000–2012.10.1109/TIFS.2018.2890812 Search in Google Scholar

Liu, Y., Wang, J., Cho, S., Finkelstein, A. and Rusinkiewicz, S. (2013). A no-reference metric for evaluating the quality of motion deblurring, ACM Transactions on Graphics 32(6): 175:1–175:12.10.1145/2508363.2508391 Search in Google Scholar

Matychyn, I. and Onyshchenko, V. (2021). Time-optimal control of linear fractional systems with variable coefficients, International Journal of Applied Mathematics and Computer Science 31(3): 375–386, DOI: 10.34768/amcs-2021-0025. Search in Google Scholar

Pan, J., Hu, Z., Su, Z. and Yang, M.H. (2014a). Deblurring text images via 0-regularized intensity and gradient prior, 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, pp. 2901–2908.10.1109/CVPR.2014.371 Search in Google Scholar

Pan, J., Liu, R., Su, Z. and Liu, G. (2014b). Motion blur kernel estimation via salient edges and low rank prior, 2014 IEEE International Conference on Multimedia and Expo (ICME), Chengdu, China, pp. 1–6.10.1109/ICME.2014.6890182 Search in Google Scholar

Pan, J., Sun, D., Pfister, H. and Yang, M. (2018). Deblurring images via dark channel prior, IEEE Transactions on Pattern Analysis and Machine Intelligence 40(10): 2315–2328.10.1109/TPAMI.2017.275380428952935 Search in Google Scholar

Ren, W., Cao, X., Pan, J., Guo, X., Zuo, W. and Yang, M.H. (2016). Image deblurring via enhanced low-rank prior, IEEE Transactions on Image Processing 25(7): 3426–3437.10.1109/TIP.2016.257106228113429 Search in Google Scholar

Shan, Q., Jia, J. and Agarwala, A. (2008). High-quality motion deblurring from a single image, ACM Transactions on Graphics 27(3): 1–10.10.1145/1360612.1360672 Search in Google Scholar

Sun, L., Cho, S., Wang, J. and Hays, J. (2013). Edge-based blur kernel estimation using patch priors, IEEE International Conference on Computational Photography (ICCP), Cambridge, USA, pp. 1–8. Search in Google Scholar

Wang, H., Pan, J., Su, Z. and Liang, S. (2018). Blind image deblurring using elastic-net based rank prior, Computer Vision and Image Understanding 168: 157–171.10.1016/j.cviu.2017.11.015 Search in Google Scholar

Wang, Z., Simoncelli, E.P. and Bovik, A.C. (2003). Multiscale structural similarity for image quality assessment, 37th Asilomar Conference on Signals, Systems Computers, Pacific Grove, USA, Vol. 2, pp. 1398–1402. Search in Google Scholar

Chen, X., Yang, Q.W. and Wu, J. (2010). Image deblur in gradient domain, Optical Engineering 49(11): 49–49–7.10.1117/1.3505868 Search in Google Scholar

Xie, Z. (2016). A primal-dual method with linear mapping for a saddle point problem in image deblurring, Journal of Visual Communication & Image Representation 42: 112–120.10.1016/j.jvcir.2016.11.011 Search in Google Scholar

Xu, L. and Jia, J. (2010). Two-phase kernel estimation for robust motion deblurring, Proceedings of the 11th European Conference on Computer Vision: ECCV’10, Heraklion, Crete, Greece, Part I, pp. 157–170. Search in Google Scholar

Xu, L., Zheng, S. and Jia, J. (2013). Unnatural L0 sparse representation for natural image deblurring, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, pp. 1107–1114. Search in Google Scholar

Yan, Y., Ren, W., Guo, Y., Wang, R. and Cao, X. (2017). Image deblurring via extreme channels prior, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, pp. 6978–6986. Search in Google Scholar

Yin, M., Gao, J., Tien, D. and Cai, S. (2014). Blind image deblurring via coupled sparse representation, Journal of Visual Communication & Image Representation 25(5): 814–821.10.1016/j.jvcir.2014.02.003 Search in Google Scholar

Zhang, H., Dai, Y., Li, H. and Koniusz, P. (2019). Deep stacked hierarchical multi-patch network for image deblurring, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, pp. 5971–5979. Search in Google Scholar

Zhichao, F., Yingbin, Z., Hao, Y., Yu, K., Jing, Y. and Liang, H. (2019). Edge-aware deep image deblurring, arXiv: 1907.02282. Search in Google Scholar

Zhong, L., Cho, S., Metaxas, D., Paris, S. and Wang, J. (2013). Handling noise in single image deblurring using directional filters, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, pp. 612–619. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo