1. bookVolume 32 (2022): Issue 3 (September 2022)
    Recent Advances in Modelling, Analysis and Implementation of Cyber-Physical Systems (Special section, pp. 345-413), Remigiusz Wiśniewski, Luis Gomes and Shaohua Wan (Eds.)
Journal Details
License
Format
Journal
eISSN
2083-8492
First Published
05 Apr 2007
Publication timeframe
4 times per year
Languages
English
Open Access

Modelling Information for the Burnishing Process in a Cyber–Physical Production System

Published Online: 08 Oct 2022
Volume & Issue: Volume 32 (2022) - Issue 3 (September 2022) - Recent Advances in Modelling, Analysis and Implementation of Cyber-Physical Systems (Special section, pp. 345-413), Remigiusz Wiśniewski, Luis Gomes and Shaohua Wan (Eds.)
Page range: 345 - 354
Received: 30 Sep 2021
Accepted: 20 May 2022
Journal Details
License
Format
Journal
eISSN
2083-8492
First Published
05 Apr 2007
Publication timeframe
4 times per year
Languages
English

Alcácer, V. (2019). Scanning the Industry 4.0: A literature review on technologies for manufacturing systems, Engineering Science and Technology, an International Journal 22(3): 899–919. Search in Google Scholar

Alpar, P. and Schulz, M. (2016). Self-service business intelligence, Business and Information Systems Engineering 58: 151–155, DOI: 10.1007/s12599-016-0424-6. Open DOISearch in Google Scholar

Borkowski, B., Dudek, H. and Szcz˛esny, W. (2017). Econometrics: Selected Issues, PWN, Warsaw, (in Polish). Search in Google Scholar

Broy, M. (2010). Cyber-Phisical Systems. Innovation Durch Software-Intensive Eingebettete Systeme, Springer, Munich. Search in Google Scholar

Chen, W., Li, Y., Xue, W., Shahabi, H., Li, S., Hong, H., Wang, H., Bian, H., Zhang, S., Pradhan, B. and Ahmad, B. (2020). Modeling flood susceptibility using data-driven approaches of naïve Bayes tree, alternating decision tree, and random forest methods, Science of the Total Environment 701: 134979, DOI: 10.1016/j.scitotenv.2019.134979. Open DOISearch in Google Scholar

Chomienne, V., Valiorgue, F., Rech, J. and Verdu, C. (2016). Influence of ball burnishing on residual stress profile of a 15-5PH stainless steel, CIRP Journal of Manufacturing Science and Technology 13: 90–96.10.1016/j.cirpj.2015.12.003 Search in Google Scholar

DAT (2016). Kompetenzentwicklungsstudie Industrie 4.0: Erste Ergebnisse und Schlussfolgerungen, Acatech, Munich, https://www.acatech.de/publikation/kompetenzentwicklungsstudie-industrie-4-0-erste-ergebnisse-und-schlussfolgerungen/. Search in Google Scholar

de Lacalle, L.N., Rodríguez, A., Lamikiz, A., Celaya, A. and Alberdi, R. (2011). Five-axis machining and burnishing of complex parts for the improvement of surface roughness, Materials and Manufacturing Processes 26(8): 997–1003.10.1080/10426914.2010.529589 Search in Google Scholar

Dumitrescu, R., Gausemeier, J. and Kühn, A. (2015). Auf dem Weg zu Industrie 4.0: Erfolgsfaktor Referenzarchitektur, Technical report TR-47, it‘s OWL Clustermanagement GmbH (Hrsg.), Paderborn, https://www.its-owl.de/fileadmin/PDF/Informationsmaterialien/2015-Auf_dem_Weg_zu_Industrie_4.0_Erfolgsfaktor_Referenzarchitektur.pdf. Search in Google Scholar

Farzaneh, M., Isaai, M., Arasti, M. and Mehralian, G. (2018). A framework for developing business intelligence systems: A knowledge perspective, Management Research Review 41(12): 1358–1374, DOI: 10.1108/MRR-01-2018-0007. Open DOISearch in Google Scholar

Hassan, A. and Maqableh, A. (2000). The effects of initial burnishing parameters on non-ferrous components, Journal of Materials Processing Technology 102(1–3): 115–121.10.1016/S0924-0136(00)00464-7 Search in Google Scholar

Jaworski, M. (2018). Regression function and noise variance tracking methods for data streams with concept drift, International Journal of Applied Mathematics and Computer Science 28(3): 559–567, DOI: 10.2478/amcs-2018-0043. Open DOISearch in Google Scholar

Jeehyeong, K., Guejong, J. and Jongpil, J. (2019). A novel CPPS architecture integrated with centralized OPC UA server for 5G-based smart manufacturing, Procedia Computer Science 155: 113–120.10.1016/j.procs.2019.08.019 Search in Google Scholar

Kagermann, H., Wahlster, W. and Helbig, J. (2013). Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0, Technical report, Acatech, Frankfurt/Main, htthttps://www.din.de/blob/76902/e8cac883f42bf28536e7e8165993f1fd/recommendations-for-implementing-industry-4-0-data.pdf. Search in Google Scholar

Kowalik, P. (2012). The use of spreadsheets to select response variables using the information capacity index method (Hellwig’s method), in Z.E. Zieliński (Ed), The Role of Informatics in the Economic and Social Sciences: Innovation and Interdisciplinary Implications, Vol. 2, WSH Publishing House, Kielce, pp. 168–178, (in Polish). Search in Google Scholar

Krupitzer, C., Muller, S., Lesch, V., Zufle, M., Edinger, J., Lemken, A., Schafer, D., Kounev, S. and Becker, C. (2020). A survey on human machine interaction in industry 4.0, ArXiv: abs/2002.01025. Search in Google Scholar

Meissner, H. and Aurich, J.C. (2019). Implications of cyber-physical production systems on integrated process planning and scheduling, Procedia Manufacturing 28: 167–173.10.1016/j.promfg.2018.12.027 Search in Google Scholar

Mourtzis, D. (2020). Simulation in the design and operation of manufacturing systems: State of the art and new trends, International Journal of Production Research 58(7): 1927–1949.10.1080/00207543.2019.1636321 Search in Google Scholar

Posdzich, M., Stöckmann, R., Witt, M. and Putz, M. (2010). Determination of surface shape deviation by using force-controlled burnishing, Procedia CIRP 93: 1275–1280.10.1016/j.procir.2020.04.095 Search in Google Scholar

Rojas, R., Rauch, E., Vidoni, R. and Matt, D.T. (2017). Enabling connectivity of cyber-physical production systems: A conceptual framework, Procedia Manufacturing 11: 822–829.10.1016/j.promfg.2017.07.184 Search in Google Scholar

Roldán, J., Crespo, E. and Martín-Barrio, A. (2019). A training system for Industry 4.0 operators in complex assemblies based on virtual reality and process mining, Robotics and Computer-Integrated Manufacturing 59: 305–316, DOI: 10.1016/j.rcim.2019.05.004. Open DOISearch in Google Scholar

Tonelli, F., Demartini, M., Pacella, M. and Lala, R. (2021). Cyber-physical systems (CPS) in supply chain management: From foundation to practical implementation, Procedia CIRP 99: 598–603.10.1016/j.procir.2021.03.080 Search in Google Scholar

Trabesinger, S., Pichler, R., Schall, D. and Gfrerer, R. (2019). Connectivity as a prior challenge in establishing CPPS on basis of heterogeneous IT-software environments, Procedia Manufacturing 31: 370–376.10.1016/j.promfg.2019.03.058 Search in Google Scholar

Tutunea, M. and Rus, R. (2012). Business intelligence solutions for SME’s, Procedia Economics and Finance 3: 865–870.10.1016/S2212-5671(12)00242-0 Search in Google Scholar

Wang, W., Zhang, Y. and Zhong, R. (2020). A proactive material handling method for CPS enabled shop-floor, Robotics and Computer-Integrated Manufacturing 61: 101849, DOI: 10.1016/j.rcim.2019.101849. Open DOISearch in Google Scholar

Wojnakowski, M., Wiśniewski, R., Bazydło, G. and Popławski, M. (2021). Analysis of safeness in a Petri net-based specification of the control part of cyber-physical systems, International Journal of Applied Mathematics and Computer Science 31(4): 647–657, DOI: 10.34768/amcs-2021-0045. Open DOISearch in Google Scholar

Yli-Ojanpera, M., Sierla, S., Papakonstantinou, N. and Vyatkin, V. (2019). Adapting an agile manufacturing concept to the reference architecture model Industry 4.0: A survey and case study, Journal of Industrial Information Integration 15: 147–160, DOI: 10.1016/j.jii.2018.12.002. Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo