Department of Obstetrics and Gynaecology, Department of Endocrinology and Reproductive Medicine, University Clinic Freiburg, Freiburg im Breisgau, University of FreiburgFreiburg, Germany
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abate TA, Desta AF, Love NG. Evaluating tannery wastewater treatment performance based on physicochemical and microbiological characteristics: An Ethiopian case study. Water Environ Res. 2021 May;93(5):658–669. https://doi.org/10.1002/wer.1364AbateTADestaAFLoveNG.Evaluating tannery wastewater treatment performance based on physicochemical and microbiological characteristics: An Ethiopian case study. Water Environ Res. 2021May;93(5):658–669. https://doi.org/10.1002/wer.1364Search in Google Scholar
Albokari M, Arishi A, Essa A. Molecular analysis of the bacterial communities from tannery contaminated sites in Riyadh, Saudi Arabia. Res J Biotech. 2018 Mar;13(3):46–53.AlbokariMArishiAEssaA.Molecular analysis of the bacterial communities from tannery contaminated sites in Riyadh, Saudi Arabia. Res J Biotech. 2018Mar;13(3):46–53.Search in Google Scholar
Aparicio JD, Raimondo EE, Saez JM, Costa-Gutierrez SB, Ál-varez A, Benimeli CS, Polti MA. The current approach to soil remediation: A review of physicochemical and biological technologies, and the potential of their strategic combination. J Environ Chem Eng. 2022 Apr;10(2):107141. https://doi.org/10.1016/j.jece.2022.107141AparicioJDRaimondoEESaezJMCosta-GutierrezSBÁl-varezABenimeliCSPoltiMA.The current approach to soil remediation: A review of physicochemical and biological technologies and the potential of their strategic combination. J Environ Chem Eng. 2022Apr;10(2):107141. https://doi.org/10.1016/j.jece.2022.107141Search in Google Scholar
Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, Ogata H. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020 Apr;36(7):2251–2252. https://doi.org/10.1093/bioinfor-matics/btz859AramakiTBlanc-MathieuREndoHOhkuboKKanehisaMGotoSOgataH.KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020Apr;36(7):2251–2252. https://doi.org/10.1093/bioinfor-matics/btz859Search in Google Scholar
Bacosa HP, Mabuhay-Omar JA, Balisco RAT, Omar DM Jr, Inoue C. Biodegradation of binary mixtures of octane with benzene, toluene, ethylbenzene or xylene (BTEX): Insights on the potential of Burkholderia, Pseudomonas and Cupriavidus isolates. World J Microbiol Biotechnol. 2021 Jun;37(7):122. https://doi.org/10.1007/s11274-021-03093-4BacosaHPMabuhay-OmarJABaliscoRATOmarDMJrInoueC.Biodegradation of binary mixtures of octane with benzene, toluene, ethylbenzene or xylene (BTEX): Insights on the potential of Burkholderia, Pseudomonas and Cupriavidus isolates. World J Microbiol Biotechnol. 2021Jun;37(7):122. https://doi.org/10.1007/s11274-021-03093-4Search in Google Scholar
Banerjee S, Bedics A, Harkai P, Kriszt B, Alpula N, Táncsics A. Evaluating the aerobic xylene-degrading potential of the intrinsic microbial community of a legacy BTEX-contaminated aquifer by enrichment culturing coupled with multi-omics analysis: Uncovering the role of Hydrogenophaga strains in xylene degradation. Environ Sci Pollut Res Int. 2022a Apr;29(19):28431–28445. https://doi.org/10.1007/s11356-021-18300-wBanerjeeSBedicsAHarkaiPKrisztBAlpulaNTáncsicsA.Evaluating the aerobic xylene-degrading potential of the intrinsic microbial community of a legacy BTEX-contaminated aquifer by enrichment culturing coupled with multi-omics analysis: Uncovering the role of Hydrogenophaga strains in xylene degradation. Environ Sci Pollut Res Int. 2022aApr;29(19):28431–28445. https://doi.org/10.1007/s11356-021-18300-wSearch in Google Scholar
Banerjee S, Bedics A, Tóth E, Kriszt B, Soares AR, Bóka K, Tánc-sics A. Isolation of Pseudomonas aromaticivorans sp. nov from a hydrocarbon-contaminated groundwater capable of degrading benzene-, toluene-, m-and p-xylene under microaerobic conditions. Front Microbiol. 2022b Sep;13:929128. https://doi.org/10.3389/fmicb.2022.929128BanerjeeSBedicsATóthEKrisztBSoaresARBókaKTánc-sicsA.Isolation of Pseudomonas aromaticivorans sp. nov from a hydrocarbon-contaminated groundwater capable of degrading benzene-, toluene-, m-and p-xylene under microaerobic conditions. Front Microbiol. 2022bSep;13:929128. https://doi.org/10.3389/fmicb.2022.929128Search in Google Scholar
Bedics A, Táncsics A, Tóth E, Banerjee S, Harkai P, Kovács B, Bóka K, Kriszt B. Microaerobic enrichment of benzene-degrading bacteria and description of Ideonella benzenivorans sp. nov., capable of degrading benzene, toluene and ethylbenzene under microaerobic conditions. Antonie Van Leeuwenhoek. 2022 Sep;115(9):1113–1128. https://doi.org/10.1007/s10482-022-01759-zBedicsATáncsicsATóthEBanerjeeSHarkaiPKovácsBBókaKKrisztB.Microaerobic enrichment of benzene-degrading bacteria and description of Ideonella benzenivorans sp. nov., capable of degrading benzene toluene and ethylbenzene under microaerobic conditions. Antonie Van Leeuwenhoek. 2022Sep;115(9):1113–1128. https://doi.org/10.1007/s10482-022-01759-zSearch in Google Scholar
Biswas R, Halder U, Kabiraj A, Mondal A, Bandopadhyay R. Overview on the role of heavy metals tolerance on developing antibiotic resistance in both Gram-negative and Gram-positive bacteria. Arch Microbiol. 2021 Aug;203(6):2761–2770. https://doi.org/10.1007/s00203-021-02275-wBiswasRHalderUKabirajAMondalABandopadhyayR.Overview on the role of heavy metals tolerance on developing antibiotic resistance in both Gram-negative and Gram-positive bacteria. Arch Microbiol. 2021Aug;203(6):2761–2770. https://doi.org/10.1007/s00203-021-02275-wSearch in Google Scholar
Blair JM, Richmond GE, Piddock LJ. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol. 2014;9(10):1165–1177. https://doi.org/10.2217/fmb.14.66BlairJMRichmondGEPiddockLJ.Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol. 2014;9(10):1165–1177. https://doi.org/10.2217/fmb.14.66Search in Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014 Aug;30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170BolgerAMLohseMUsadelB.Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014Aug;30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170Search in Google Scholar
Brewster JD. A simple micro-growth assay for enumerating bacteria. J Microbiol Methods. 2003 Apr;53(1):77–86. https://doi.org/10.1016/s0167-7012(02)00226-9BrewsterJD.A simple micro-growth assay for enumerating bacteria. J Microbiol Methods. 2003Apr;53(1):77–86. https://doi.org/10.1016/s0167-7012(02)00226-9Search in Google Scholar
Caron-Beaudoin É, Whyte KP, Bouchard MF, Chevrier J, Haddad S, Copes R, Frohlich KL, Dokkie D; Treaty 8 Tribal Association; Juul S, et al. Volatile organic compounds (VOCs) in indoor air and tap water samples in residences of pregnant women living in an area of unconventional natural gas operations: Findings from the EXPERIVA study. Sci Total Environ. 2022 Jan;805:150242. https://doi.org/10.1016/j.scitotenv.2021.150242Caron-BeaudoinÉWhyteKPBouchardMFChevrierJHaddadSCopesRFrohlichKLDokkieDTreaty 8 Tribal AssociationJuulSVolatile organic compounds (VOCs) in indoor air and tap water samples in residences of pregnant women living in an area of unconventional natural gas operations: Findings from the EXPERIVA study. Sci Total Environ. 2022Jan;805:150242. https://doi.org/10.1016/j.scitotenv.2021.150242Search in Google Scholar
Chettri D, Verma AK, Chirania M, Verma AK. Metagenomic approaches in bioremediation of environmental pollutants. Environ Pollut. 2024 Dec;363(Pt_2):125297. https://doi.org/10.1016/j.en-vpol.2024.125297ChettriDVermaAKChiraniaMVermaAK.Metagenomic approaches in bioremediation of environmental pollutants. Environ Pollut. 2024Dec;363(Pt_2):125297. https://doi.org/10.1016/j.en-vpol.2024.125297Search in Google Scholar
Chicca I, Becarelli S, Dartiahl C, La China S, De Kievit T, Petroni G, Di Gregorio S, Levin DB. Degradation of BTEX mixture by a new Pseudomonas putida strain: Role of the quorum sensing in the modulation of the upper BTEX oxidative pathway. Environ Sci Pol-lut Res Int. 2020 Oct;27(29):36203–36214. https://doi.org/10.1007/s11356-020-09650-yChiccaIBecarelliSDartiahlCLa ChinaSDe KievitTPetroniGDi GregorioSLevinDB.Degradation of BTEX mixture by a new Pseudomonas putida strain: Role of the quorum sensing in the modulation of the upper BTEX oxidative pathway. Environ Sci Pol-lut Res Int. 2020Oct;27(29):36203–36214. https://doi.org/10.1007/s11356-020-09650-ySearch in Google Scholar
Cunningham CJ, Kuyukina MS, Ivshina IB, Konev AI, Peshkur TA, Knapp CW. Potential risks of antibiotic resistant bacteria and genes in bioremediation of petroleum hydrocarbon contaminated soils. Environ Sci Processes Impacts. 2020 May;22(5):1110–1124. https://doi.org/10.1039/c9em00606kCunninghamCJKuyukinaMSIvshinaIBKonevAIPeshkurTAKnappCW.Potential risks of antibiotic resistant bacteria and genes in bioremediation of petroleum hydrocarbon contaminated soils. Environ Sci Processes Impacts. 2020May;22(5):1110–1124. https://doi.org/10.1039/c9em00606kSearch in Google Scholar
Dairawan M, Shetty PJ. The evolution of DNA extraction methods. Am J Biomed Sci Res. 2020 Feb;8(1);39–45. https://doi.org/10.34297/AJBSR.2020.08.001234DairawanMShettyPJ.The evolution of DNA extraction methods. Am J Biomed Sci Res. 2020Feb;8(1);39–45. https://doi.org/10.34297/AJBSR.2020.08.001234Search in Google Scholar
Devanadera A, Vejarano F, Zhai Y, Suzuki-Minakuchi C, Oht-subo Y, Tsuda M, Kasai Y, Takahata Y, Okada K, Nojiri H. Complete genome sequence of an anaerobic benzene-degrading bacterium, Azoarcus sp. strain DN11. Microbiol Resour Announc. 2019 Mar;8(11):e01699-18. https://doi.org/10.1128/MRA.01699-18DevanaderaAVejaranoFZhaiYSuzuki-MinakuchiCOht-suboYTsudaMKasaiYTakahataYOkadaKNojiriH.Complete genome sequence of an anaerobic benzene-degrading bacterium, Azoarcus sp. strain DN11. Microbiol Resour Announc. 2019Mar;8(11):e01699-18. https://doi.org/10.1128/MRA.01699-18Search in Google Scholar
Doley R, Barthakur M. Biodegradation of monoaromatic hydrocarbons toluene and xylene through native bacterial strain Bacillus subtilis RD20. Research Square. 2022. https://doi.org/10.21203/rs.3.rs-1974378/v2DoleyRBarthakurM.Biodegradation of monoaromatic hydrocarbons toluene and xylene through native bacterial strain Bacillus subtilis RD20. Research Square. 2022. https://doi.org/10.21203/rs.3.rs-1974378/v2Search in Google Scholar
Dou J, Ding A, Liu X, Du Y, Deng D, Wang J. Anaerobic benzene biodegradation by a pure bacterial culture of Bacillus cereus under nitrate reducing conditions. J Environ Sci. 2010;22(5):709–715. https://doi.org/10.1016/s1001-0742(09)60167-4DouJDingALiuXDuYDengDWangJ.Anaerobic benzene biodegradation by a pure bacterial culture of Bacillus cereus under nitrate reducing conditions. J Environ Sci. 2010;22(5):709–715. https://doi.org/10.1016/s1001-0742(09)60167-4Search in Google Scholar
Evangelista AT, Truant AL, Bourbeau PP. Rapid systems and instruments for the identification of bacteria. In: Truant AL, editor. Manual of commercial methods in clinical microbiology. Washington (USA): ASM Press; 2001. p. 22–49. https://doi.org/10.1128/9781555817961.ch3EvangelistaATTruantALBourbeauPP.Rapid systems and instruments for the identification of bacteria. In: TruantAL, editor. Manual of commercial methods in clinical microbiology. Washington (USA): ASM Press; 2001. p. 22–49. https://doi.org/10.1128/9781555817961.ch3Search in Google Scholar
Eze MO. Metagenome analysis of a hydrocarbon-degrading bacterial consortium reveals the specific roles of BTEX biodegraders. Genes. 2021 Jan;12(1):98. https://doi.org/10.3390/genes12010098EzeMO.Metagenome analysis of a hydrocarbon-degrading bacterial consortium reveals the specific roles of BTEX biodegraders. Genes. 2021Jan;12(1):98. https://doi.org/10.3390/genes12010098Search in Google Scholar
Francisco P Jr, Ogawa N, Suzuki K, Miyashita K. The chlorobenzoate dioxygenase genes of Burkholderia sp. strain NK8 involved in the catabolism of chlorobenzoates. Microbiology. 2001 Jan;147(Pt_1):121–133. https://doi.org/10.1099/00221287-147-1-121Francisco PJrOgawaNSuzukiKMiyashitaK.The chlorobenzoate dioxygenase genes of Burkholderia sp. strain NK8 involved in the catabolism of chlorobenzoates. Microbiology. 2001Jan;147(Pt_1):121–133. https://doi.org/10.1099/00221287-147-1-121Search in Google Scholar
Ganesh A, Lin J. Diesel degradation and biosurfactant production by Gram-positive isolates. Afr J Biotechnol. 2009 Nov;8(21):5847–5854. https://doi.org/10.5897/AJB09.811GaneshALinJ.Diesel degradation and biosurfactant production by Gram-positive isolates. Afr J Biotechnol. 2009Nov;8(21):5847–5854. https://doi.org/10.5897/AJB09.811Search in Google Scholar
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics. 2013 Apr;29(8):1072–1075. https://doi.org/10.1093/bioinformatics/btt086GurevichASavelievVVyahhiNTeslerG.QUAST: Quality assessment tool for genome assemblies. Bioinformatics. 2013Apr;29(8):1072–1075. https://doi.org/10.1093/bioinformatics/btt086Search in Google Scholar
Ha BN, Tan TN. Integration of bioremediation and physico-chemical methods for wastewater treatment and resource recovery. In: Srivastav AL, Zinicovscaia I, Cepoi L, editors. Biotechnologies for wastewater treatment and resource recovery. Amsterdam (The Netherlands): Elsevier Inc.; 2025. p. 109–122. https://doi.org/10.1016/B978-0-443-27376-6.00002-5HaBNTanTN.Integration of bioremediation and physico-chemical methods for wastewater treatment and resource recovery. In: SrivastavALZinicovscaiaICepoiL, editors. Biotechnologies for wastewater treatment and resource recovery. Amsterdam (The Netherlands): Elsevier Inc.; 2025. p. 109–122. https://doi.org/10.1016/B978-0-443-27376-6.00002-5Search in Google Scholar
Handayani S, Safitri R, Surono W, Astika H, Damayanti R, Agung M, Rukiah. Biodegradation of BTEX by indigenous microorganisms isolated from UCG project area, South Sumatra. IOP Conf Ser Earth Environ Sci. 2019;308:012017. https://doi.org/10.1088/1755-1315/308/1/012017HandayaniSSafitriRSuronoWAstikaHDamayantiRAgungMRukiahBiodegradation of BTEX by indigenous microorganisms isolated from UCG project area, South Sumatra. IOP Conf Ser Earth Environ Sci. 2019;308:012017. https://doi.org/10.1088/1755-1315/308/1/012017Search in Google Scholar
Hidde Boersma F, Colin McRoberts W, Cobb SL, Murphy CD. A 19F NMR study of fluorobenzoate biodegradation by Sphingomonas sp. HB-1. FEMS Microbiol Lett. 2004 Aug;237(2):355–361. https://doi.org/10.1111/j.1574-6968.2004.tb09717.xHidde BoersmaFColin McRobertsWCobbSLMurphyCD.A 19F NMR study of fluorobenzoate biodegradation by Sphingomonas sp. HB-1. FEMS Microbiol Lett. 2004Aug;237(2):355–361. https://doi.org/10.1111/j.1574-6968.2004.tb09717.xSearch in Google Scholar
Hossain MS, Iken B, Iyer R. Whole genome analysis of 26 bacterial strains reveals aromatic and hydrocarbon degrading enzymes from diverse environmental soil samples. Sci Rep. 2024 Dec;14(1):30685. https://doi.org/10.1038/s41598-024-78564-3HossainMSIkenBIyerR.Whole genome analysis of 26 bacterial strains reveals aromatic and hydrocarbon degrading enzymes from diverse environmental soil samples. Sci Rep. 2024Dec;14(1):30685. https://doi.org/10.1038/s41598-024-78564-3Search in Google Scholar
Hussain N, Mohiuddin F, Muccee F, Bunny SM, Al Haddad AHI. Isolation, molecular, and metabolic profiling of benzene-remediat-ing bacteria inhabiting the tannery industry soil. Pol J Microbiol. 2025 Mar;74(1):33–47. https://doi.org/10.33073/pjm-2025-003HussainNMohiuddinFMucceeFBunnySMAl HaddadAHI.Isolation, molecular, and metabolic profiling of benzene-remediat-ing bacteria inhabiting the tannery industry soil. Pol J Microbiol. 2025Mar;74(1):33–47. https://doi.org/10.33073/pjm-2025-003Search in Google Scholar
Jin A, Tursun D, Tan L, Yang Z, Duo Z, Qin Y, Zhang R. Whole genome sequencing and analysis of benzo(a)pyrene-degrading bacteria Bacillus cereus M72-4. Genome. 2025 Jan;68:1–9. https://doi.org/10.1139/gen-2024-0114JinATursunDTanLYangZDuoZQinYZhangR.Whole genome sequencing and analysis of benzo(a)pyrene-degrading bacteria Bacillus cereus M72-4. Genome. 2025Jan;68:1–9. https://doi.org/10.1139/gen-2024-0114Search in Google Scholar
Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019 Jul;7:e7359. https://doi.org/10.7717/peerj.7359KangDDLiFKirtonEThomasAEganRAnHWangZ.MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019Jul;7:e7359. https://doi.org/10.7717/peerj.7359Search in Google Scholar
Kannan P, Verma I, Banerjee B, Saleena LM. Unveiling bacterial consortium for xenobiotic biodegradation from Pichavaram mangrove forest soil: A metagenomic approach. Arch Microbiol. 2023 Dec;206(1):27. https://doi.org/10.1007/s00203-023-03765-9KannanPVermaIBanerjeeBSaleenaLM.Unveiling bacterial consortium for xenobiotic biodegradation from Pichavaram mangrove forest soil: A metagenomic approach. Arch Microbiol. 2023Dec;206(1):27. https://doi.org/10.1007/s00203-023-03765-9Search in Google Scholar
Kaur G, Lecka J, Krol M, Brar SK. Novel BTEX-degrading strains from subsurface soil: Isolation, identification and growth evaluation. Environ Pollut. 2023 Oct;335:122303. https://doi.org/10.1016/j.envpol.2023.122303KaurGLeckaJKrolMBrarSK.Novel BTEX-degrading strains from subsurface soil: Isolation, identification and growth evaluation. Environ Pollut. 2023Oct;335:122303. https://doi.org/10.1016/j.envpol.2023.122303Search in Google Scholar
Kaur G, Sood P. Significance of biological approaches/bioremediation of wastewater treatment over physicochemical methods: a comparative analysis. In: Srivastav AL, Zinicovscaia I, Cepoi L, editors. Biotechnologies for wastewater treatment and resource recovery. Amsterdam (The Netherlands): Elsevier; 2025. p. 211-225. https://doi.org/10.1016/B978-0-443-27376-6.00027-XKaurGSoodP.Significance of biological approaches/bioremediation of wastewater treatment over physicochemical methods: a comparative analysis. In: SrivastavALZinicovscaiaICepoiL, editors. Biotechnologies for wastewater treatment and resource recovery. Amsterdam (The Netherlands): Elsevier; 2025. p. 211-225. https://doi.org/10.1016/B978-0-443-27376-6.00027-XSearch in Google Scholar
Kaur G, Verma S, Krol M, Brar SK. Analysis of benzene, toluene, ethylbenzene, xylene(s) biodegradation under anoxic conditions using response surface methodology. Int Biodeterior Biodegrad. 2025 Feb;198:105973. https://doi.org/10.1016/j.ibiod.2024.105973KaurGVermaSKrolMBrarSK.Analysis of benzene toluene, ethylbenzene, xylene(s) biodegradation under anoxic conditions using response surface methodology. Int Biodeterior Biodegrad. 2025Feb;198:105973. https://doi.org/10.1016/j.ibiod.2024.105973Search in Google Scholar
Kesavan S, Inamdar MG, Muthunarayanan V. Concentration of benzene, toluene, napthalene and acenaphthene on selected bacterial species. Mater Today Proc. 2021;37:273–279. https://doi.org/10.1016/j.matpr.2020.05.241KesavanSInamdarMGMuthunarayananV.Concentration of benzene, toluene, napthalene and acenaphthene on selected bacterial species. Mater Today Proc. 2021;37:273–279. https://doi.org/10.1016/j.matpr.2020.05.241Search in Google Scholar
Kumar L, Chugh M, Kumar S, Kumar K, Sharma J, Bharadvaja N. Remediation of petrorefinery wastewater contaminants: A review on physicochemical and bioremediation strategies. Process Saf Environ Prot. 2022 Mar;159:362–375. https://doi.org/10.1016/j.psep.2022.01.009KumarLChughMKumarSKumarKSharmaJBharadvajaN.Remediation of petrorefinery wastewater contaminants: A review on physicochemical and bioremediation strategies. Process Saf Environ Prot. 2022Mar;159:362–375. https://doi.org/10.1016/j.psep.2022.01.009Search in Google Scholar
Kuppan N, Padman M, Mahadeva M, Srinivasan S, Devarajan R. A comprehensive review of sustainable bioremediation techniques: Eco friendly solutions for waste and pollution management. Waste Manage Bull. 2024 Sep;2(3):154–171. https://doi.org/10.1016/j.wmb.2024.07.005KuppanNPadmanMMahadevaMSrinivasanSDevarajanR.A comprehensive review of sustainable bioremediation techniques: Eco friendly solutions for waste and pollution management. Waste Manage Bull. 2024Sep;2(3):154–171. https://doi.org/10.1016/j.wmb.2024.07.005Search in Google Scholar
Lee SH, Jin HM, Lee HJ, Kim JM, Jeon CO. Complete genome sequence of the BTEX-degrading bacterium Pseudoxanthomonas spadix BD-a59. J Bacteriol. 2012 Jan;194(2):544. https://doi.org/10.1128/JB.06436-11LeeSHJinHMLeeHJKimJMJeonCO.Complete genome sequence of the BTEX-degrading bacterium Pseudoxanthomonas spadix BD-a59. J Bacteriol. 2012Jan;194(2):544. https://doi.org/10.1128/JB.06436-11Search in Google Scholar
Lee Y, Lee Y, Jeon CO. Biodegradation of naphthalene, BTEX, and aliphatic hydrocarbons by Paraburkholderia aromaticivorans BN5 isolated from petroleum-contaminated soil. Sci Rep. 2019 Jan;9(1):860. https://doi.org/10.1038/s41598-018-36165-xLeeYLeeYJeonCO.Biodegradation of naphthalene, BTEX, and aliphatic hydrocarbons by Paraburkholderia aromaticivorans BN5 isolated from petroleum-contaminated soil. Sci Rep. 2019Jan;9(1):860. https://doi.org/10.1038/s41598-018-36165-xSearch in Google Scholar
Li AJ, Pal VK, Kannan K. A review of environmental occurrence, toxicity, biotransformation and biomonitoring of volatile organic compounds. Environ Chem Ecotoxicol. 2021;3;91–116. https://doi.org/10.1016/j.enceco.2021.01.001LiAJPalVKKannanK.A review of environmental occurrence, toxicity, biotransformation and biomonitoring of volatile organic compounds. Environ Chem Ecotoxicol. 2021;3;91–116. https://doi.org/10.1016/j.enceco.2021.01.001Search in Google Scholar
Li F, Wang B, Zhu B. Occupational health risk assessment and risk monetization based on xylene exposure. Ecotoxicol Environ Saf. 2025 Jan;290:117562. https://doi.org/10.1016/j.ecoenv.2024.117562LiFWangBZhuB.Occupational health risk assessment and risk monetization based on xylene exposure. Ecotoxicol Environ Saf. 2025Jan;290:117562. https://doi.org/10.1016/j.ecoenv.2024.117562Search in Google Scholar
Liaqat I, Sabri AN. Analysis of cell wall constituents of biocide-resistant isolates from dental-unit water line biofilms. Curr Microbiol. 2008 Oct;57(4):340–347. https://doi.org/10.1007/s00284-008-9200-2LiaqatISabriAN.Analysis of cell wall constituents of biocide-resistant isolates from dental-unit water line biofilms. Curr Microbiol. 2008Oct;57(4):340–347. https://doi.org/10.1007/s00284-008-9200-2Search in Google Scholar
Lopez ES, Elufisan TO, Bustos P, Charles CPM, Mendoza-Herrera A, Guo X. Complete genome report of a hydrocarbon-degrading Sphingobium yanoikuyae S72. Appl Sci. 2022 Jun; 12(12):6201. https://doi.org/10.3390/app12126201LopezESElufisanTOBustosPCharlesCPMMendoza-HerreraAGuoX.Complete genome report of a hydrocarbon-degrading Sphingobium yanoikuyae S72. Appl Sci. 2022Jun; 12(12):6201. https://doi.org/10.3390/app12126201Search in Google Scholar
Matheson S, Fleck R, Irga PJ, Torpy FR. Phytoremediation for the indoor environment: A state-of-the-art review. Rev Environ Sci Biotechnol. 2023;22(1):249–280. https://doi.org/10.1007/s11157-023-09644-5MathesonSFleckRIrgaPJTorpyFR.Phytoremediation for the indoor environment: A state-of-the-art review. Rev Environ Sci Biotechnol. 2023;22(1):249–280. https://doi.org/10.1007/s11157-023-09644-5Search in Google Scholar
Mayz J, Manzi L, Lárez A. Isolation, characterization and identification of hydrocarbonoclastic Pseudomonas species inhabiting the rhizosphere of Crotalaria micans Link. Eur J Exp Biol. 2013;3(5):313–332.MayzJManziLLárezA.Isolation, characterization and identification of hydrocarbonoclastic Pseudomonas species inhabiting the rhizosphere of Crotalaria micans Link. Eur J Exp Biol. 2013;3(5):313–332.Search in Google Scholar
Mazzeo DEC, Levy CE, de Angelis Dde F, Marin-Morales MA. BTEX biodegradation by bacteria from effluents of petroleum refinery. Sci Total Environ. 2010 Sep;408(20):4334–4340. https://doi.org/10.1016/j.scitotenv.2010.07.004MazzeoDECLevyCEde Angelis DdeFMarin-MoralesMA.BTEX biodegradation by bacteria from effluents of petroleum refinery. Sci Total Environ. 2010Sep;408(20):4334–4340. https://doi.org/10.1016/j.scitotenv.2010.07.004Search in Google Scholar
Miri S, Rasooli A, Brar SK, Rouissi T, Martel R. Biodegradation of p-xylene – a comparison of three psychrophilic Pseudomonas strains through the lens of gene expression. Environ Sci Pollut Res Int. 2022 Mar;29(15):21465–21479. https://doi.org/10.1007/s11356-021-17387-5MiriSRasooliABrarSKRouissiTMartelR.Biodegradation of p-xylene – a comparison of three psychrophilic Pseudomonas strains through the lens of gene expression. Environ Sci Pollut Res Int. 2022Mar;29(15):21465–21479. https://doi.org/10.1007/s11356-021-17387-5Search in Google Scholar
Mohamed MA, Jaafar J, Ismail AF, Othman MHD, Rahman MA. Fourier transform infrared (FTIR) spectroscopy. In: Hilal N, Ismail AF, Matsuura T, Oatley-Radcliffe D, editors. Membrane characterization. Amsterdam (The Netherlands): Elsevier; 2017. p. 3–29. https://doi.org/10.1016/B978-0-444-63776-5.00001-2MohamedMAJaafarJIsmailAFOthmanMHDRahmanMA.Fourier transform infrared (FTIR) spectroscopy. In: HilalNIsmailAFMatsuuraTOatley-RadcliffeD, editors. Membrane characterization. Amsterdam (The Netherlands): Elsevier; 2017. p. 3–29. https://doi.org/10.1016/B978-0-444-63776-5.00001-2Search in Google Scholar
Mohammadpour H, Shahriarinour M, Yousefi R. Benzene degradation by free and immobilized Bacillus glycinifermantans strain GO-13T using GO sheets. Pol J Environ Stud. 2020;29(4):2783–2793. https://doi.org/10.15244/pjoes/111512MohammadpourHShahriarinourMYousefiR.Benzene degradation by free and immobilized Bacillus glycinifermantans strain GO-13T using GO sheets. Pol J Environ Stud. 2020;29(4):2783–2793. https://doi.org/10.15244/pjoes/111512Search in Google Scholar
Nagda A, Meena M, Shah MP. Bioremediation of industrial effluents: A synergistic approach. J Basic Microbiol. 2022 Mar;62(3-4):395–414. https://doi.org/10.1002/jobm.202100225NagdaAMeenaMShahMP.Bioremediation of industrial effluents: A synergistic approach. J Basic Microbiol. 2022Mar;62(3-4):395–414. https://doi.org/10.1002/jobm.202100225Search in Google Scholar
Nanda M, Kumar V, Sharma DK. Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy metal contaminants from water. Aquat Toxicol. 2019 Jul;212:1–10. https://doi.org/10.1016/j.aquatox.2019.04.011NandaMKumarVSharmaDK.Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy metal contaminants from water. Aquat Toxicol. 2019Jul;212:1–10. https://doi.org/10.1016/j.aquatox.2019.04.011Search in Google Scholar
Neely CJ, Graham ED, Tully BJ. MetaSanity: An integrated microbial genome evaluation and annotation pipeline. Bioinformatics. 2020 Aug;36(15):4341–4344. https://doi.org/10.1093/bioinformat-ics/btaa512NeelyCJGrahamEDTullyBJ.MetaSanity: An integrated microbial genome evaluation and annotation pipeline. Bioinformatics. 2020Aug;36(15):4341–4344. https://doi.org/10.1093/bioinformat-ics/btaa512Search in Google Scholar
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 2017 May;27(5):824–834. https://doi.org/10.1101/gr.213959.116NurkSMeleshkoDKorobeynikovAPevznerPA.metaSPAdes: A new versatile metagenomic assembler. Genome Res. 2017May;27(5):824–834. https://doi.org/10.1101/gr.213959.116Search in Google Scholar
Ortega-González DK, Zaragoza D, Aguirre-Garrido J, Ramírez-Saad H, Hernández-Rodríguez C, Jan-Roblero J. Degradation of benzene, toluene, and xylene isomers by a bacterial consortium obtained from rhizosphere soil of Cyperus sp. grown in a petroleum-contaminated area. Folia Microbiol. 2013 Nov;58(6):569–577. https://doi.org/10.1007/s12223-013-0248-4Ortega-GonzálezDKZaragozaDAguirre-GarridoJRamírez-SaadHHernández-RodríguezCJan-RobleroJ.Degradation of benzene, toluene, and xylene isomers by a bacterial consortium obtained from rhizosphere soil of Cyperus sp. grown in a petroleum-contaminated area. Folia Microbiol. 2013Nov;58(6):569–577. https://doi.org/10.1007/s12223-013-0248-4Search in Google Scholar
Oruko RO, Odiyo JO, Edokpayi JN. The role of leather microbes in human health. In: Chauhan NS, editor. Role of microbes in human health and diseases. London (UK): IntechOpen; 2019. https://doi.org/10.5772/intechopen.81125OrukoROOdiyoJOEdokpayiJN.The role of leather microbes in human health. In: ChauhanNS, editor. Role of microbes in human health and diseases. London (UK): IntechOpen; 2019. https://doi.org/10.5772/intechopen.81125Search in Google Scholar
Oyewusi HA, Wahab RA, Huyop F. Whole genome strategies and bioremediation insight into dehalogenase-producing bacteria. Mol Biol Rep. 2021 Mar;48(3):2687–2701. https://doi.org/10.1007/s11033-021-06239-7OyewusiHAWahabRAHuyopF.Whole genome strategies and bioremediation insight into dehalogenase-producing bacteria. Mol Biol Rep. 2021Mar;48(3):2687–2701. https://doi.org/10.1007/s11033-021-06239-7Search in Google Scholar
Raju KS, Kumar DN. Review of approaches for selection and en-sembling of GCMs. J Water Clim Change. 2020 Sep;11(3);577–599. https://doi.org/10.2166/wcc.2020.128RajuKSKumarDN.Review of approaches for selection and en-sembling of GCMs. J Water Clim Change. 2020Sep;11(3);577–599. https://doi.org/10.2166/wcc.2020.128Search in Google Scholar
Révész F, Farkas M, Kriszt B, Szoboszlay S, Benedek T, Táncsics A. Effect of oxygen limitation on the enrichment of bacteria degrading either benzene or toluene and the identification of Malikia spinosa (Comamonadaceae) as prominent aerobic benzene-, toluene-, and ethylbenzene-degrading bacterium: Enrichment, isolation and whole-genome analysis. Environ Sci Pollut Res Int. 2020 Sep;27(25):31130–31142. https://doi.org/10.1007/s11356-020-09277-zRévészFFarkasMKrisztBSzoboszlaySBenedekTTáncsicsA.Effect of oxygen limitation on the enrichment of bacteria degrading either benzene or toluene and the identification of Malikia spinosa (Comamonadaceae) as prominent aerobic benzene-, toluene-, and ethylbenzene-degrading bacterium: Enrichment, isolation and whole-genome analysis. Environ Sci Pollut Res Int. 2020Sep;27(25):31130–31142. https://doi.org/10.1007/s11356-020-09277-zSearch in Google Scholar
Sales da Silva IG, Gomes de Almeida FC, Padilha da Rocha e Silva NM, Casazza AA, Converti A, Asfora Sarubbo L. Soil bioremediation: Overview of technologies and trends. Energies 2020;13(18):4664. https://doi.org/10.3390/en13184664Sales da SilvaIGGomes de AlmeidaFCPadilha da Rocha e SilvaNMCasazzaAAConvertiAAsfora SarubboL.Soil bioremediation: Overview of technologies and trends. Energies2020;13(18):4664. https://doi.org/10.3390/en13184664Search in Google Scholar
Sathesh-Prabu C, Woo J, Kim Y, Kim SM, Lee SB, Jeon CO, Kim D, Lee SK. Comparative genomic analysis and BTEX degradation pathways of a thermotolerant Cupriavidus cauae PHS1. J Microbiol Biotechnol. 2023 Jul;33(7):875–885. https://doi.org/10.4014/jmb.2301.01011Sathesh-PrabuCWooJKimYKimSMLeeSBJeonCOKimDLeeSK.Comparative genomic analysis and BTEX degradation pathways of a thermotolerant Cupriavidus cauae PHS1. J Microbiol Biotechnol. 2023Jul;33(7):875–885. https://doi.org/10.4014/jmb.2301.01011Search in Google Scholar
Schad L. Polychlorinated biphenyl (PCB) pollution of the Hudson River: Social policy and health considerations. Honors Theses. 2016:208. [cited 2025 Jan 20]. Available from https://digitalworks.union.edu/theses/208SchadL.Polychlorinated biphenyl (PCB) pollution of the Hudson River: Social policy and health considerations. Honors Theses. 2016:208. [cited 2025 Jan 20]. Available from https://digitalworks.union.edu/theses/208Search in Google Scholar
Schumann P, Pukall R. The discriminatory power of ribotyping as automatable technique for differentiation of bacteria. Syst Appl Microbiol. 2013 Sep;36(6):369–375. https://doi.org/10.1016/j.syapm.2013.05.003SchumannPPukallR.The discriminatory power of ribotyping as automatable technique for differentiation of bacteria. Syst Appl Microbiol. 2013Sep;36(6):369–375. https://doi.org/10.1016/j.syapm.2013.05.003Search in Google Scholar
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014 Jul;30(14):2068-9. https://doi.org/10.1093/bioin-formatics/btu153SeemannT.Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014Jul;30(14):2068-9. https://doi.org/10.1093/bioin-formatics/btu153Search in Google Scholar
Sornaly HH, Ahmed S, Titin KF, Islam MN, Parvin A, Islam MA, Faruquee HM, Biswas KK, Islam R, Paul DK. The utility of bioremediation approach over physicochemical methods to detoxify dyes discharges from textile effluents: A comprehensive review study. Sustainable Chem Pharm. 2024 Jum;39:101538. https://doi.org/10.1016/j.scp.2024.101538SornalyHHAhmedSTitinKFIslamMNParvinAIslamMAFaruqueeHMBiswasKKIslamRPaulDK.The utility of bioremediation approach over physicochemical methods to detoxify dyes discharges from textile effluents: A comprehensive review study. Sustainable Chem Pharm. 2024Jum;39:101538. https://doi.org/10.1016/j.scp.2024.101538Search in Google Scholar
Surendra SV, Mahalingam BL, Velan M. Degradation of monoaromatics by Bacillus pumilus MVSV3. Braz Arch Biol Technol. 2017;60:e16160319. https://doi.org/10.1590/1678-4324-2017160319SurendraSVMahalingamBLVelanM.Degradation of monoaromatics by Bacillus pumilus MVSV3. Braz Arch Biol Technol. 2017;60:e16160319. https://doi.org/10.1590/1678-4324-2017160319Search in Google Scholar
Tabakova T. State of the art and challenges in complete benzene oxidation: A review. Molecules. 2024 Nov;29(22):5484. https://doi.org/10.3390/molecules29225484TabakovaT.State of the art and challenges in complete benzene oxidation: A review. Molecules. 2024Nov;29(22):5484. https://doi.org/10.3390/molecules29225484Search in Google Scholar
Táncsics A, Farkas M, Horváth B, Maróti G, Bradford LM, Lueders T, Kriszt B. Genome analysis provides insights into microaerobic toluene-degradation pathway of Zoogloea oleivorans BucT. Arch Microbiol. 2020 Mar;202(2):421–426. https://doi.org/10.1007/s00203-019-01743-8TáncsicsAFarkasMHorváthBMarótiGBradfordLMLuedersTKrisztB.Genome analysis provides insights into microaerobic toluene-degradation pathway of Zoogloea oleivorans BucT. Arch Microbiol. 2020Mar;202(2):421–426. https://doi.org/10.1007/s00203-019-01743-8Search in Google Scholar
Undugoda L, Kandisa R, Kannangara S, Sirisena D. Plasmid encoded toluene and xylene degradation by phyllosphere bacteria. J Environ Anal Toxicol. 2018;8(2):1000559. https://doi.org/10.4172/2161-0525.1000559UndugodaLKandisaRKannangaraSSirisenaD.Plasmid encoded toluene and xylene degradation by phyllosphere bacteria. J Environ Anal Toxicol. 2018;8(2):1000559. https://doi.org/10.4172/2161-0525.1000559Search in Google Scholar
Unegg MC, Steininger KW, Ramsauer C, Rivera-Aguilar M. Assessing the environmental impact of waste management: A comparative study of CO2 emissions with a focus on recycling and incineration. J Cleaner Prod. 2023 Aug;415:137745. https://doi.org/10.1016/j.jclepro.2023.137745UneggMCSteiningerKWRamsauerCRivera-AguilarM.Assessing the environmental impact of waste management: A comparative study of CO2 emissions with a focus on recycling and incineration. J Cleaner Prod. 2023Aug;415:137745. https://doi.org/10.1016/j.jclepro.2023.137745Search in Google Scholar
Weelink SA, Van Eekert MH, Stams AJ. Degradation of BTEX by anaerobic bacteria: Physiology and application. Rev Environ Sci Bio-technol. 2010;9:359–385. https://doi.org/10.1007/s11157-010-9219-2WeelinkSAVan EekertMHStamsAJ.Degradation of BTEX by anaerobic bacteria: Physiology and application. Rev Environ Sci Bio-technol. 2010;9:359–385. https://doi.org/10.1007/s11157-010-9219-2Search in Google Scholar
Wongbunmak A, Khiawjan S, Suphantharika M, Pongtha-rangkul T. BTEX biodegradation by Bacillus amyloliquefaciens subsp. plantarum W1 and its proposed BTEX biodegradation pathways. Sci Rep. 2020 Oct;10(1):17408. https://doi.org/10.1038/s41598-020-74570-3WongbunmakAKhiawjanSSuphantharikaMPongtha-rangkulT.BTEX biodegradation by Bacillus amyloliquefaciens subsp. plantarum W1 and its proposed BTEX biodegradation pathways. Sci Rep. 2020Oct;10(1):17408. https://doi.org/10.1038/s41598-020-74570-3Search in Google Scholar
Wood DE, Salzberg SL. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014 Mar;15(3):R46. https://doi.org/10.1186/gb-2014-15-3-r46WoodDESalzbergSL.Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014Mar;15(3):R46. https://doi.org/10.1186/gb-2014-15-3-r46Search in Google Scholar
Wu S, Zhong J, Lei Q, Song H, Chen SF, Wahla AQ, Bhatt K, Chen S. New roles for Bacillus thuringiensis in the removal of environmental pollutants. Environ Res. 2023 Nov;236(Pt_1):116699 https://doi.org/10.1016/j.envres.2023.116699WuSZhongJLeiQSongHChenSFWahlaAQBhattKChenS.New roles for Bacillus thuringiensis in the removal of environmental pollutants. Environ Res. 2023Nov;236(Pt_1):116699https://doi.org/10.1016/j.envres.2023.116699Search in Google Scholar
You J, Du M, Chen H, Zhang X, Zhang S, Chen J, Cheng Z, Chen D, Ye J. BTEX degradation by a newly isolated bacterium: Performance, kinetics, and mechanism. Int Biodeterior Biodegrad. 2018 Apr;129;202–208. https://doi.org/10.1016/j.ibiod.2018.02.012YouJDuMChenHZhangXZhangSChenJChengZChenDYeJ.BTEX degradation by a newly isolated bacterium: Performance, kinetics, and mechanism. Int Biodeterior Biodegrad. 2018Apr;129;202–208. https://doi.org/10.1016/j.ibiod.2018.02.012Search in Google Scholar
You L, Li Y, Huang G, Zhang J. Modeling regional ecosystem development under uncertainty – A case study for New Binhai District of Tianjin. Ecol Modell. 2014 Sep;288:127–142. https://doi.org/10.1016/j.ecolmodel.2014.06.008YouLLiYHuangGZhangJ.Modeling regional ecosystem development under uncertainty – A case study for New Binhai District of Tianjin. Ecol Modell. 2014Sep;288:127–142. https://doi.org/10.1016/j.ecolmodel.2014.06.008Search in Google Scholar
Zhang R, Ye Z, Guo X, Yang Y, Li G. Microbial diversity and metabolic pathways linked to benzene degradation in petrochemical-polluted groundwater. Environ Int. 2024 Jun;188:108755. https://doi.org/10.1016/j.envint.2024.108755ZhangRYeZGuoXYangYLiG.Microbial diversity and metabolic pathways linked to benzene degradation in petrochemical-polluted groundwater. Environ Int. 2024Jun;188:108755. https://doi.org/10.1016/j.envint.2024.108755Search in Google Scholar